ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpancom GIF version

Theorem mpancom 413
Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpancom.1 (𝜓𝜑)
mpancom.2 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
mpancom (𝜓𝜒)

Proof of Theorem mpancom
StepHypRef Expression
1 mpancom.1 . 2 (𝜓𝜑)
2 id 19 . 2 (𝜓𝜓)
3 mpancom.2 . 2 ((𝜑𝜓) → 𝜒)
41, 2, 3syl2anc 403 1 (𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 106
This theorem is referenced by:  mpan  414  spesbc  2899  onsucelsucr  4252  sucunielr  4254  ordsuc  4306  peano2b  4355  xpiindim  4491  fvelrnb  5242  fliftcnv  5455  riotaprop  5511  unielxp  5820  dmtpos  5894  tpossym  5914  ercnv  6150  php5dom  6349  recrecnq  6584  1idpr  6782  eqlei2  7205  lem1  7925  eluzfz1  9050  fzpred  9087  uznfz  9120  fz0fzdiffz0  9141  fzctr  9144  flid  9286  flqeqceilz  9320  faclbnd3  9670  bcn1  9685  leabs  9960  gcd0id  10370  lcmgcdlem  10459  dvdsnprmd  10507  bj-nn0suc0  10745
  Copyright terms: Public domain W3C validator