![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpancom | GIF version |
Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpancom.1 | ⊢ (𝜓 → 𝜑) |
mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mpancom | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 1, 2, 3 | syl2anc 403 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 |
This theorem is referenced by: mpan 414 spesbc 2899 onsucelsucr 4252 sucunielr 4254 ordsuc 4306 peano2b 4355 xpiindim 4491 fvelrnb 5242 fliftcnv 5455 riotaprop 5511 unielxp 5820 dmtpos 5894 tpossym 5914 ercnv 6150 php5dom 6349 recrecnq 6584 1idpr 6782 eqlei2 7205 lem1 7925 eluzfz1 9050 fzpred 9087 uznfz 9120 fz0fzdiffz0 9141 fzctr 9144 flid 9286 flqeqceilz 9320 faclbnd3 9670 bcn1 9685 leabs 9960 gcd0id 10370 lcmgcdlem 10459 dvdsnprmd 10507 bj-nn0suc0 10745 |
Copyright terms: Public domain | W3C validator |