| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spimh | GIF version | ||
| Description: Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1666 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| spimh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| spimh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimh | ⊢ (∀𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 2 | spimh.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | 1, 2 | syl6com 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 4 | 3 | alimi 1384 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) |
| 5 | ax9o 1628 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓) → 𝜓) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: spim 1666 |
| Copyright terms: Public domain | W3C validator |