| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2abdv | GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
| Ref | Expression |
|---|---|
| ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimiv 1795 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 3 | ss2ab 3062 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
| 4 | 2, 3 | sylibr 132 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 {cab 2067 ⊆ wss 2973 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 |
| This theorem is referenced by: ssopab2 4030 iotass 4904 imadif 4999 imain 5001 opabbrex 5569 ssoprab2 5581 |
| Copyright terms: Public domain | W3C validator |