ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imain GIF version

Theorem imain 5001
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imainlem 5000 . . 3 (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵))
21a1i 9 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) ⊆ ((𝐹𝐴) ∩ (𝐹𝐵)))
3 eeanv 1848 . . . . . 6 (∃𝑥𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)))
4 simprll 503 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐴)
5 simpr 108 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑥𝐹𝑦) → 𝑥𝐹𝑦)
6 simpr 108 . . . . . . . . . . . . . 14 ((𝑧𝐵𝑧𝐹𝑦) → 𝑧𝐹𝑦)
75, 6anim12i 331 . . . . . . . . . . . . 13 (((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥𝐹𝑦𝑧𝐹𝑦))
8 funcnveq 4982 . . . . . . . . . . . . . . . . 17 (Fun 𝐹 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
98biimpi 118 . . . . . . . . . . . . . . . 16 (Fun 𝐹 → ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
10919.21bi 1490 . . . . . . . . . . . . . . 15 (Fun 𝐹 → ∀𝑦𝑧((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
111019.21bbi 1491 . . . . . . . . . . . . . 14 (Fun 𝐹 → ((𝑥𝐹𝑦𝑧𝐹𝑦) → 𝑥 = 𝑧))
1211imp 122 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑥𝐹𝑦𝑧𝐹𝑦)) → 𝑥 = 𝑧)
137, 12sylan2 280 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥 = 𝑧)
14 simprrl 505 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑧𝐵)
1513, 14eqeltrd 2155 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐵)
16 elin 3155 . . . . . . . . . . 11 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
174, 15, 16sylanbrc 408 . . . . . . . . . 10 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥 ∈ (𝐴𝐵))
18 simprlr 504 . . . . . . . . . 10 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → 𝑥𝐹𝑦)
1917, 18jca 300 . . . . . . . . 9 ((Fun 𝐹 ∧ ((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦))) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2019ex 113 . . . . . . . 8 (Fun 𝐹 → (((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
2120exlimdv 1740 . . . . . . 7 (Fun 𝐹 → (∃𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
2221eximdv 1801 . . . . . 6 (Fun 𝐹 → (∃𝑥𝑧((𝑥𝐴𝑥𝐹𝑦) ∧ (𝑧𝐵𝑧𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
233, 22syl5bir 151 . . . . 5 (Fun 𝐹 → ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦)))
24 df-rex 2354 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
25 df-rex 2354 . . . . . 6 (∃𝑧𝐵 𝑧𝐹𝑦 ↔ ∃𝑧(𝑧𝐵𝑧𝐹𝑦))
2624, 25anbi12i 447 . . . . 5 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦) ↔ (∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∃𝑧(𝑧𝐵𝑧𝐹𝑦)))
27 df-rex 2354 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2823, 26, 273imtr4g 203 . . . 4 (Fun 𝐹 → ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦))
2928ss2abdv 3067 . . 3 (Fun 𝐹 → {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦})
30 dfima2 4690 . . . . 5 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
31 dfima2 4690 . . . . 5 (𝐹𝐵) = {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦}
3230, 31ineq12i 3165 . . . 4 ((𝐹𝐴) ∩ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦})
33 inab 3232 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∩ {𝑦 ∣ ∃𝑧𝐵 𝑧𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)}
3432, 33eqtri 2101 . . 3 ((𝐹𝐴) ∩ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ∃𝑧𝐵 𝑧𝐹𝑦)}
35 dfima2 4690 . . 3 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3629, 34, 353sstr4g 3040 . 2 (Fun 𝐹 → ((𝐹𝐴) ∩ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵)))
372, 36eqssd 3016 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wex 1421  wcel 1433  {cab 2067  wrex 2349  cin 2972  wss 2973   class class class wbr 3785  ccnv 4362  cima 4366  Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-fun 4924
This theorem is referenced by:  inpreima  5314
  Copyright terms: Public domain W3C validator