ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssex GIF version

Theorem ssex 3915
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 3896 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
ssex.1 𝐵 ∈ V
Assertion
Ref Expression
ssex (𝐴𝐵𝐴 ∈ V)

Proof of Theorem ssex
StepHypRef Expression
1 df-ss 2986 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 ssex.1 . . . 4 𝐵 ∈ V
32inex2 3913 . . 3 (𝐴𝐵) ∈ V
4 eleq1 2141 . . 3 ((𝐴𝐵) = 𝐴 → ((𝐴𝐵) ∈ V ↔ 𝐴 ∈ V))
53, 4mpbii 146 . 2 ((𝐴𝐵) = 𝐴𝐴 ∈ V)
61, 5sylbi 119 1 (𝐴𝐵𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  cin 2972  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986
This theorem is referenced by:  ssexi  3916  ssexg  3917  inteximm  3924  funimaexglem  5002  tfrexlem  5971  elinp  6664  negfi  10110
  Copyright terms: Public domain W3C validator