ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssexi GIF version

Theorem ssexi 3916
Description: The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
ssexi.1 𝐵 ∈ V
ssexi.2 𝐴𝐵
Assertion
Ref Expression
ssexi 𝐴 ∈ V

Proof of Theorem ssexi
StepHypRef Expression
1 ssexi.2 . 2 𝐴𝐵
2 ssexi.1 . . 3 𝐵 ∈ V
32ssex 3915 . 2 (𝐴𝐵𝐴 ∈ V)
41, 3ax-mp 7 1 𝐴 ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 1433  Vcvv 2601  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986
This theorem is referenced by:  zfausab  3920  pp0ex  3960  ord3ex  3961  epse  4097  opabex  5406  oprabex  5775  phplem2  6339  phpm  6351  niex  6502  enqex  6550  enq0ex  6629  npex  6663  ltnqex  6739  gtnqex  6740  recexprlemell  6812  recexprlemelu  6813  enrex  6914  axcnex  7027  peano5nnnn  7058  reex  7107  nnex  8045  zex  8360  qex  8717  ixxex  8922  frecuzrdgrrn  9410  frec2uzrdg  9411  frecuzrdgrom  9412  frecuzrdgsuc  9417  resqrexlemf  9893  resqrexlemf1  9894  resqrexlemfp1  9895  iserclim0  10144  climle  10172  prmex  10495
  Copyright terms: Public domain W3C validator