ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinp GIF version

Theorem elinp 6664
Description: Membership in positive reals. (Contributed by Jim Kingdon, 27-Sep-2019.)
Assertion
Ref Expression
elinp (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
Distinct variable groups:   𝑟,𝑞,𝐿   𝑈,𝑞,𝑟

Proof of Theorem elinp
Dummy variables 𝑢 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npsspw 6661 . . . . 5 P ⊆ (𝒫 Q × 𝒫 Q)
21sseli 2995 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ⟨𝐿, 𝑈⟩ ∈ (𝒫 Q × 𝒫 Q))
3 opelxp 4392 . . . 4 (⟨𝐿, 𝑈⟩ ∈ (𝒫 Q × 𝒫 Q) ↔ (𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q))
42, 3sylib 120 . . 3 (⟨𝐿, 𝑈⟩ ∈ P → (𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q))
5 elex 2610 . . . 4 (𝐿 ∈ 𝒫 Q𝐿 ∈ V)
6 elex 2610 . . . 4 (𝑈 ∈ 𝒫 Q𝑈 ∈ V)
75, 6anim12i 331 . . 3 ((𝐿 ∈ 𝒫 Q𝑈 ∈ 𝒫 Q) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
84, 7syl 14 . 2 (⟨𝐿, 𝑈⟩ ∈ P → (𝐿 ∈ V ∧ 𝑈 ∈ V))
9 nqex 6553 . . . . 5 Q ∈ V
109ssex 3915 . . . 4 (𝐿Q𝐿 ∈ V)
119ssex 3915 . . . 4 (𝑈Q𝑈 ∈ V)
1210, 11anim12i 331 . . 3 ((𝐿Q𝑈Q) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
1312ad2antrr 471 . 2 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → (𝐿 ∈ V ∧ 𝑈 ∈ V))
14 df-inp 6656 . . . 4 P = {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))}
1514eleq2i 2145 . . 3 (⟨𝐿, 𝑈⟩ ∈ P ↔ ⟨𝐿, 𝑈⟩ ∈ {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))})
16 sseq1 3020 . . . . . . 7 (𝑙 = 𝐿 → (𝑙Q𝐿Q))
1716anbi1d 452 . . . . . 6 (𝑙 = 𝐿 → ((𝑙Q𝑢Q) ↔ (𝐿Q𝑢Q)))
18 eleq2 2142 . . . . . . . 8 (𝑙 = 𝐿 → (𝑞𝑙𝑞𝐿))
1918rexbidv 2369 . . . . . . 7 (𝑙 = 𝐿 → (∃𝑞Q 𝑞𝑙 ↔ ∃𝑞Q 𝑞𝐿))
2019anbi1d 452 . . . . . 6 (𝑙 = 𝐿 → ((∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢) ↔ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)))
2117, 20anbi12d 456 . . . . 5 (𝑙 = 𝐿 → (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ↔ ((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢))))
22 eleq2 2142 . . . . . . . . . . 11 (𝑙 = 𝐿 → (𝑟𝑙𝑟𝐿))
2322anbi2d 451 . . . . . . . . . 10 (𝑙 = 𝐿 → ((𝑞 <Q 𝑟𝑟𝑙) ↔ (𝑞 <Q 𝑟𝑟𝐿)))
2423rexbidv 2369 . . . . . . . . 9 (𝑙 = 𝐿 → (∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)))
2518, 24bibi12d 233 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ↔ (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿))))
2625ralbidv 2368 . . . . . . 7 (𝑙 = 𝐿 → (∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ↔ ∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿))))
2726anbi1d 452 . . . . . 6 (𝑙 = 𝐿 → ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ↔ (∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)))))
2818anbi1d 452 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙𝑞𝑢) ↔ (𝑞𝐿𝑞𝑢)))
2928notbid 624 . . . . . . 7 (𝑙 = 𝐿 → (¬ (𝑞𝑙𝑞𝑢) ↔ ¬ (𝑞𝐿𝑞𝑢)))
3029ralbidv 2368 . . . . . 6 (𝑙 = 𝐿 → (∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ↔ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢)))
3118orbi1d 737 . . . . . . . 8 (𝑙 = 𝐿 → ((𝑞𝑙𝑟𝑢) ↔ (𝑞𝐿𝑟𝑢)))
3231imbi2d 228 . . . . . . 7 (𝑙 = 𝐿 → ((𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)) ↔ (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))
33322ralbidv 2390 . . . . . 6 (𝑙 = 𝐿 → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)) ↔ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))
3427, 30, 333anbi123d 1243 . . . . 5 (𝑙 = 𝐿 → (((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))) ↔ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)))))
3521, 34anbi12d 456 . . . 4 (𝑙 = 𝐿 → ((((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢)))) ↔ (((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))))))
36 sseq1 3020 . . . . . . 7 (𝑢 = 𝑈 → (𝑢Q𝑈Q))
3736anbi2d 451 . . . . . 6 (𝑢 = 𝑈 → ((𝐿Q𝑢Q) ↔ (𝐿Q𝑈Q)))
38 eleq2 2142 . . . . . . . 8 (𝑢 = 𝑈 → (𝑟𝑢𝑟𝑈))
3938rexbidv 2369 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑟Q 𝑟𝑢 ↔ ∃𝑟Q 𝑟𝑈))
4039anbi2d 451 . . . . . 6 (𝑢 = 𝑈 → ((∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢) ↔ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)))
4137, 40anbi12d 456 . . . . 5 (𝑢 = 𝑈 → (((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ↔ ((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈))))
42 eleq2 2142 . . . . . . . . . . 11 (𝑢 = 𝑈 → (𝑞𝑢𝑞𝑈))
4342anbi2d 451 . . . . . . . . . 10 (𝑢 = 𝑈 → ((𝑞 <Q 𝑟𝑞𝑢) ↔ (𝑞 <Q 𝑟𝑞𝑈)))
4443rexbidv 2369 . . . . . . . . 9 (𝑢 = 𝑈 → (∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈)))
4538, 44bibi12d 233 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)) ↔ (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))))
4645ralbidv 2368 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢)) ↔ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))))
4746anbi2d 451 . . . . . 6 (𝑢 = 𝑈 → ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ↔ (∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈)))))
4842anbi2d 451 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑞𝐿𝑞𝑢) ↔ (𝑞𝐿𝑞𝑈)))
4948notbid 624 . . . . . . 7 (𝑢 = 𝑈 → (¬ (𝑞𝐿𝑞𝑢) ↔ ¬ (𝑞𝐿𝑞𝑈)))
5049ralbidv 2368 . . . . . 6 (𝑢 = 𝑈 → (∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ↔ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈)))
5138orbi2d 736 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑞𝐿𝑟𝑢) ↔ (𝑞𝐿𝑟𝑈)))
5251imbi2d 228 . . . . . . 7 (𝑢 = 𝑈 → ((𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)) ↔ (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))
53522ralbidv 2390 . . . . . 6 (𝑢 = 𝑈 → (∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)) ↔ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))
5447, 50, 533anbi123d 1243 . . . . 5 (𝑢 = 𝑈 → (((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢))) ↔ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
5541, 54anbi12d 456 . . . 4 (𝑢 = 𝑈 → ((((𝐿Q𝑢Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑢)))) ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
5635, 55opelopabg 4023 . . 3 ((𝐿 ∈ V ∧ 𝑈 ∈ V) → (⟨𝐿, 𝑈⟩ ∈ {⟨𝑙, 𝑢⟩ ∣ (((𝑙Q𝑢Q) ∧ (∃𝑞Q 𝑞𝑙 ∧ ∃𝑟Q 𝑟𝑢)) ∧ ((∀𝑞Q (𝑞𝑙 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝑙)) ∧ ∀𝑟Q (𝑟𝑢 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑢))) ∧ ∀𝑞Q ¬ (𝑞𝑙𝑞𝑢) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝑙𝑟𝑢))))} ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
5715, 56syl5bb 190 . 2 ((𝐿 ∈ V ∧ 𝑈 ∈ V) → (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈))))))
588, 13, 57pm5.21nii 652 1 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433  wral 2348  wrex 2349  Vcvv 2601  wss 2973  𝒫 cpw 3382  cop 3401   class class class wbr 3785  {copab 3838   × cxp 4361  Qcnq 6470   <Q cltq 6475  Pcnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  elnp1st2nd  6666  prml  6667  prmu  6668  prssnql  6669  prssnqu  6670  prcdnql  6674  prcunqu  6675  prltlu  6677  prnmaxl  6678  prnminu  6679  prloc  6681  prdisj  6682  nqprxx  6736
  Copyright terms: Public domain W3C validator