| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2i | GIF version | ||
| Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| ssopab2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ssopab2i | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssopab2 4030 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 2 | ssopab2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | 2 | ax-gen 1378 | . 2 ⊢ ∀𝑦(𝜑 → 𝜓) |
| 4 | 1, 3 | mpg 1380 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 ⊆ wss 2973 {copab 3838 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-in 2979 df-ss 2986 df-opab 3840 |
| This theorem is referenced by: brab2a 4411 opabssxp 4432 funopab4 4957 ssoprab2i 5613 npsspw 6661 |
| Copyright terms: Public domain | W3C validator |