| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnfALT | GIF version | ||
| Description: Alternate proof of strcollnf 10780, not using strcollnft 10779. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
| Ref | Expression |
|---|---|
| strcollnfALT | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strcoll2 10778 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑)) | |
| 2 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑏 𝑦 ∈ 𝑧 | |
| 3 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑏𝑎 | |
| 4 | strcollnf.nf | . . . . . 6 ⊢ Ⅎ𝑏𝜑 | |
| 5 | 3, 4 | nfrexxy 2403 | . . . . 5 ⊢ Ⅎ𝑏∃𝑥 ∈ 𝑎 𝜑 |
| 6 | 2, 5 | nfbi 1521 | . . . 4 ⊢ Ⅎ𝑏(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
| 7 | 6 | nfal 1508 | . . 3 ⊢ Ⅎ𝑏∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
| 8 | nfv 1461 | . . 3 ⊢ Ⅎ𝑧∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑) | |
| 9 | elequ2 1641 | . . . . 5 ⊢ (𝑧 = 𝑏 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑏)) | |
| 10 | 9 | bibi1d 231 | . . . 4 ⊢ (𝑧 = 𝑏 → ((𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ (𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
| 11 | 10 | albidv 1745 | . . 3 ⊢ (𝑧 = 𝑏 → (∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑))) |
| 12 | 7, 8, 11 | cbvex 1679 | . 2 ⊢ (∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑎 𝜑) ↔ ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| 13 | 1, 12 | sylib 120 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 Ⅎwnf 1389 ∃wex 1421 ∀wral 2348 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-strcoll 10777 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |