| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpeq3d | GIF version | ||
| Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.) |
| Ref | Expression |
|---|---|
| tpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| tpeq3d | ⊢ (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | tpeq3 3480 | . 2 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 {ctp 3400 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-tp 3406 |
| This theorem is referenced by: tpeq123d 3484 |
| Copyright terms: Public domain | W3C validator |