![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3400 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3399 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3398 | . . 3 class {𝐶} |
7 | 5, 6 | cun 2971 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1284 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3438 raltpg 3445 rextpg 3446 tpeq1 3478 tpeq2 3479 tpeq3 3480 tpcoma 3486 tpass 3488 qdass 3489 tpidm12 3491 diftpsn3 3527 snsstp1 3535 snsstp2 3536 snsstp3 3537 prsstp12 3538 tpss 3550 tpssi 3551 ord3ex 3961 tpexg 4197 dmtpop 4816 funtpg 4970 funtp 4972 fntpg 4975 ftpg 5368 fvtp1g 5390 fztp 9095 bdctp 10663 |
Copyright terms: Public domain | W3C validator |