ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniopel GIF version

Theorem uniopel 4011
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1 𝐴 ∈ V
opthw.2 𝐵 ∈ V
Assertion
Ref Expression
uniopel (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4 𝐴 ∈ V
2 opthw.2 . . . 4 𝐵 ∈ V
31, 2uniop 4010 . . 3 𝐴, 𝐵⟩ = {𝐴, 𝐵}
41, 2opi2 3988 . . 3 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
53, 4eqeltri 2151 . 2 𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵
6 elssuni 3629 . . 3 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ⊆ 𝐶)
76sseld 2998 . 2 (⟨𝐴, 𝐵⟩ ∈ 𝐶 → (𝐴, 𝐵⟩ ∈ ⟨𝐴, 𝐵⟩ → 𝐴, 𝐵⟩ ∈ 𝐶))
85, 7mpi 15 1 (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴, 𝐵⟩ ∈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  Vcvv 2601  {cpr 3399  cop 3401   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602
This theorem is referenced by:  dmrnssfld  4613  unielrel  4865
  Copyright terms: Public domain W3C validator