![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniopel | GIF version |
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthw.1 | ⊢ 𝐴 ∈ V |
opthw.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniopel | ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | opthw.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | uniop 4010 | . . 3 ⊢ ∪ 〈𝐴, 𝐵〉 = {𝐴, 𝐵} |
4 | 1, 2 | opi2 3988 | . . 3 ⊢ {𝐴, 𝐵} ∈ 〈𝐴, 𝐵〉 |
5 | 3, 4 | eqeltri 2151 | . 2 ⊢ ∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 |
6 | elssuni 3629 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 〈𝐴, 𝐵〉 ⊆ ∪ 𝐶) | |
7 | 6 | sseld 2998 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → (∪ 〈𝐴, 𝐵〉 ∈ 〈𝐴, 𝐵〉 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶)) |
8 | 5, 7 | mpi 15 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → ∪ 〈𝐴, 𝐵〉 ∈ ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 Vcvv 2601 {cpr 3399 〈cop 3401 ∪ cuni 3601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 |
This theorem is referenced by: dmrnssfld 4613 unielrel 4865 |
Copyright terms: Public domain | W3C validator |