![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseld | GIF version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssel 2993 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1433 ⊆ wss 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 |
This theorem is referenced by: sselda 2999 sseldd 3000 ssneld 3001 elelpwi 3393 ssbrd 3826 uniopel 4011 onintonm 4261 sucprcreg 4292 ordsuc 4306 0elnn 4358 dmrnssfld 4613 nfunv 4953 opelf 5082 fvimacnv 5303 ffvelrn 5321 f1imass 5434 dftpos3 5900 nnmordi 6112 diffifi 6378 ordiso2 6446 prarloclemarch2 6609 ltexprlemrl 6800 cauappcvgprlemladdrl 6847 caucvgprlemladdrl 6868 caucvgprlem1 6869 uzind 8458 supinfneg 8683 infsupneg 8684 ixxssxr 8923 elfz0add 9134 fzoss1 9180 iseqss 9446 bj-nnord 10753 |
Copyright terms: Public domain | W3C validator |