ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 3972
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3604 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3393 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1529 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 119 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2604 . . . . 5 𝑥 ∈ V
65snid 3425 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 3967 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3606 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 405 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 124 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2078 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1284  wex 1421  wcel 1433  𝒫 cpw 3382  {csn 3398   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-uni 3602
This theorem is referenced by:  pwtr  3974  pwexb  4224  univ  4225  unixpss  4469
  Copyright terms: Public domain W3C validator