ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr GIF version

Theorem zfregfr 4316
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4087 . 2 ( E Fr 𝐴 ↔ ∀𝑠 FrFor E 𝐴𝑠)
2 bi2.04 246 . . . . . . 7 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ (𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
32albii 1399 . . . . . 6 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
4 df-ral 2353 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
53, 4bitr4i 185 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠))
6 sbim 1868 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠))
7 clelsb3 2183 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
8 clelsb3 2183 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝑠𝑦𝑠)
97, 8imbi12i 237 . . . . . . . . . . 11 (([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
106, 9bitri 182 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
1110ralbii 2372 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝑥 (𝑦𝐴𝑦𝑠))
12 ralcom3 2521 . . . . . . . . 9 (∀𝑦𝑥 (𝑦𝐴𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1311, 12bitri 182 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
14 epel 4047 . . . . . . . . . 10 (𝑦 E 𝑥𝑦𝑥)
1514imbi1i 236 . . . . . . . . 9 ((𝑦 E 𝑥𝑦𝑠) ↔ (𝑦𝑥𝑦𝑠))
1615ralbii 2372 . . . . . . . 8 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1713, 16bitr4i 185 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠))
1817imbi1i 236 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
1918ralbii 2372 . . . . 5 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
205, 19bitri 182 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
21 ax-setind 4280 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → ∀𝑥(𝑥𝐴𝑥𝑠))
22 dfss2 2988 . . . . 5 (𝐴𝑠 ↔ ∀𝑥(𝑥𝐴𝑥𝑠))
2321, 22sylibr 132 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → 𝐴𝑠)
2420, 23sylbir 133 . . 3 (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠)
25 df-frfor 4086 . . 3 ( FrFor E 𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2624, 25mpbir 144 . 2 FrFor E 𝐴𝑠
271, 26mpgbir 1382 1 E Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1282  wcel 1433  [wsb 1685  wral 2348  wss 2973   class class class wbr 3785   E cep 4042   FrFor wfrfor 4082   Fr wfr 4083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-eprel 4044  df-frfor 4086  df-frind 4087
This theorem is referenced by:  ordfr  4317  wessep  4320  reg3exmidlemwe  4321
  Copyright terms: Public domain W3C validator