| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0top | Structured version Visualization version Unicode version | ||
| Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.) |
| Ref | Expression |
|---|---|
| 0top |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 399 |
. . 3
| |
| 2 | 0opn 20709 |
. . . . . 6
| |
| 3 | n0i 3920 |
. . . . . 6
| |
| 4 | 2, 3 | syl 17 |
. . . . 5
|
| 5 | 4 | pm2.21d 118 |
. . . 4
|
| 6 | idd 24 |
. . . 4
| |
| 7 | 5, 6 | jaod 395 |
. . 3
|
| 8 | 1, 7 | impbid2 216 |
. 2
|
| 9 | uni0b 4463 |
. . 3
| |
| 10 | sssn 4358 |
. . 3
| |
| 11 | 9, 10 | bitr2i 265 |
. 2
|
| 12 | 8, 11 | syl6rbb 277 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-uni 4437 df-top 20699 |
| This theorem is referenced by: locfinref 29908 |
| Copyright terms: Public domain | W3C validator |