MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0top Structured version   Visualization version   Unicode version

Theorem 0top 20787
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006.)
Assertion
Ref Expression
0top  |-  ( J  e.  Top  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )

Proof of Theorem 0top
StepHypRef Expression
1 olc 399 . . 3  |-  ( J  =  { (/) }  ->  ( J  =  (/)  \/  J  =  { (/) } ) )
2 0opn 20709 . . . . . 6  |-  ( J  e.  Top  ->  (/)  e.  J
)
3 n0i 3920 . . . . . 6  |-  ( (/)  e.  J  ->  -.  J  =  (/) )
42, 3syl 17 . . . . 5  |-  ( J  e.  Top  ->  -.  J  =  (/) )
54pm2.21d 118 . . . 4  |-  ( J  e.  Top  ->  ( J  =  (/)  ->  J  =  { (/) } ) )
6 idd 24 . . . 4  |-  ( J  e.  Top  ->  ( J  =  { (/) }  ->  J  =  { (/) } ) )
75, 6jaod 395 . . 3  |-  ( J  e.  Top  ->  (
( J  =  (/)  \/  J  =  { (/) } )  ->  J  =  { (/) } ) )
81, 7impbid2 216 . 2  |-  ( J  e.  Top  ->  ( J  =  { (/) }  <->  ( J  =  (/)  \/  J  =  { (/) } ) ) )
9 uni0b 4463 . . 3  |-  ( U. J  =  (/)  <->  J  C_  { (/) } )
10 sssn 4358 . . 3  |-  ( J 
C_  { (/) }  <->  ( J  =  (/)  \/  J  =  { (/) } ) )
119, 10bitr2i 265 . 2  |-  ( ( J  =  (/)  \/  J  =  { (/) } )  <->  U. J  =  (/) )
128, 11syl6rbb 277 1  |-  ( J  e.  Top  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-uni 4437  df-top 20699
This theorem is referenced by:  locfinref  29908
  Copyright terms: Public domain W3C validator