Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinref Structured version   Visualization version   Unicode version

Theorem locfinref 29908
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function  f from the original cover  U, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x  |-  X  = 
U. J
locfinref.1  |-  ( ph  ->  U  C_  J )
locfinref.2  |-  ( ph  ->  X  =  U. U
)
locfinref.3  |-  ( ph  ->  V  C_  J )
locfinref.4  |-  ( ph  ->  V Ref U )
locfinref.5  |-  ( ph  ->  V  e.  ( LocFin `  J ) )
Assertion
Ref Expression
locfinref  |-  ( ph  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `
 J ) ) )
Distinct variable groups:    f, J    U, f    f, V    ph, f
Allowed substitution hint:    X( f)

Proof of Theorem locfinref
Dummy variables  g  x  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f0 6086 . . . 4  |-  (/) : (/) --> J
2 simpr 477 . . . . 5  |-  ( (
ph  /\  U  =  (/) )  ->  U  =  (/) )
32feq2d 6031 . . . 4  |-  ( (
ph  /\  U  =  (/) )  ->  ( (/) : U --> J 
<->  (/) : (/) --> J ) )
41, 3mpbiri 248 . . 3  |-  ( (
ph  /\  U  =  (/) )  ->  (/) : U --> J )
5 rn0 5377 . . . . 5  |-  ran  (/)  =  (/)
6 0ex 4790 . . . . . 6  |-  (/)  e.  _V
7 refref 21316 . . . . . 6  |-  ( (/)  e.  _V  ->  (/) Ref (/) )
86, 7ax-mp 5 . . . . 5  |-  (/) Ref (/)
95, 8eqbrtri 4674 . . . 4  |-  ran  (/) Ref (/)
109, 2syl5breqr 4691 . . 3  |-  ( (
ph  /\  U  =  (/) )  ->  ran  (/) Ref U
)
11 sn0top 20803 . . . . . 6  |-  { (/) }  e.  Top
1211a1i 11 . . . . 5  |-  ( (
ph  /\  U  =  (/) )  ->  { (/) }  e.  Top )
13 eqidd 2623 . . . . 5  |-  ( (
ph  /\  U  =  (/) )  ->  (/)  =  (/) )
14 ral0 4076 . . . . . 6  |-  A. x  e.  (/)  E. n  e. 
{ (/) }  ( x  e.  n  /\  {
s  e.  ran  (/)  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )
1514a1i 11 . . . . 5  |-  ( (
ph  /\  U  =  (/) )  ->  A. x  e.  (/)  E. n  e. 
{ (/) }  ( x  e.  n  /\  {
s  e.  ran  (/)  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
166unisn 4451 . . . . . . 7  |-  U. { (/)
}  =  (/)
1716eqcomi 2631 . . . . . 6  |-  (/)  =  U. { (/) }
185unieqi 4445 . . . . . . 7  |-  U. ran  (/)  =  U. (/)
19 uni0 4465 . . . . . . 7  |-  U. (/)  =  (/)
2018, 19eqtr2i 2645 . . . . . 6  |-  (/)  =  U. ran  (/)
2117, 20islocfin 21320 . . . . 5  |-  ( ran  (/)  e.  ( LocFin `  { (/)
} )  <->  ( { (/)
}  e.  Top  /\  (/)  =  (/)  /\  A. x  e.  (/)  E. n  e. 
{ (/) }  ( x  e.  n  /\  {
s  e.  ran  (/)  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2212, 13, 15, 21syl3anbrc 1246 . . . 4  |-  ( (
ph  /\  U  =  (/) )  ->  ran  (/)  e.  (
LocFin `  { (/) } ) )
23 locfinref.2 . . . . . . . . 9  |-  ( ph  ->  X  =  U. U
)
2423adantr 481 . . . . . . . 8  |-  ( (
ph  /\  U  =  (/) )  ->  X  =  U. U )
252unieqd 4446 . . . . . . . 8  |-  ( (
ph  /\  U  =  (/) )  ->  U. U  = 
U. (/) )
2624, 25eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  U  =  (/) )  ->  X  =  U. (/) )
27 locfinref.x . . . . . . 7  |-  X  = 
U. J
2826, 27, 193eqtr3g 2679 . . . . . 6  |-  ( (
ph  /\  U  =  (/) )  ->  U. J  =  (/) )
29 locfinref.5 . . . . . . . 8  |-  ( ph  ->  V  e.  ( LocFin `  J ) )
30 locfintop 21324 . . . . . . . 8  |-  ( V  e.  ( LocFin `  J
)  ->  J  e.  Top )
31 0top 20787 . . . . . . . 8  |-  ( J  e.  Top  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )
3229, 30, 313syl 18 . . . . . . 7  |-  ( ph  ->  ( U. J  =  (/) 
<->  J  =  { (/) } ) )
3332adantr 481 . . . . . 6  |-  ( (
ph  /\  U  =  (/) )  ->  ( U. J  =  (/)  <->  J  =  { (/) } ) )
3428, 33mpbid 222 . . . . 5  |-  ( (
ph  /\  U  =  (/) )  ->  J  =  { (/) } )
3534fveq2d 6195 . . . 4  |-  ( (
ph  /\  U  =  (/) )  ->  ( LocFin `  J )  =  (
LocFin `  { (/) } ) )
3622, 35eleqtrrd 2704 . . 3  |-  ( (
ph  /\  U  =  (/) )  ->  ran  (/)  e.  (
LocFin `  J ) )
37 feq1 6026 . . . . 5  |-  ( f  =  (/)  ->  ( f : U --> J  <->  (/) : U --> J ) )
38 rneq 5351 . . . . . 6  |-  ( f  =  (/)  ->  ran  f  =  ran  (/) )
3938breq1d 4663 . . . . 5  |-  ( f  =  (/)  ->  ( ran  f Ref U  <->  ran  (/) Ref U
) )
4038eleq1d 2686 . . . . 5  |-  ( f  =  (/)  ->  ( ran  f  e.  ( LocFin `  J )  <->  ran  (/)  e.  (
LocFin `  J ) ) )
4137, 39, 403anbi123d 1399 . . . 4  |-  ( f  =  (/)  ->  ( ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `
 J ) )  <-> 
( (/) : U --> J  /\  ran  (/) Ref U  /\  ran  (/)  e.  ( LocFin `  J ) ) ) )
426, 41spcev 3300 . . 3  |-  ( (
(/) : U --> J  /\  ran  (/) Ref U  /\  ran  (/)  e.  ( LocFin `  J ) )  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J ) ) )
434, 10, 36, 42syl3anc 1326 . 2  |-  ( (
ph  /\  U  =  (/) )  ->  E. f
( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J )
) )
44 locfinref.1 . . . . 5  |-  ( ph  ->  U  C_  J )
45 locfinref.3 . . . . 5  |-  ( ph  ->  V  C_  J )
46 locfinref.4 . . . . 5  |-  ( ph  ->  V Ref U )
4727, 44, 23, 45, 46, 29locfinreflem 29907 . . . 4  |-  ( ph  ->  E. g ( ( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  (
LocFin `  J ) ) ) )
4847adantr 481 . . 3  |-  ( (
ph  /\  U  =/=  (/) )  ->  E. g
( ( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J
)  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J ) ) ) )
49 simpl 473 . . . 4  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ph  /\  U  =/=  (/) ) )
50 simprl1 1106 . . . . . . . 8  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  Fun  g )
51 fdmrn 6064 . . . . . . . 8  |-  ( Fun  g  <->  g : dom  g
--> ran  g )
5250, 51sylib 208 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
g : dom  g --> ran  g )
53 simprl3 1108 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  ran  g  C_  J )
5452, 53fssd 6057 . . . . . 6  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
g : dom  g --> J )
55 fconstg 6092 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( ( U  \  dom  g )  X.  { (/) } ) : ( U  \  dom  g ) --> { (/) } )
566, 55mp1i 13 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ( U  \  dom  g )  X.  { (/)
} ) : ( U  \  dom  g
) --> { (/) } )
57 0opn 20709 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (/)  e.  J
)
5829, 30, 573syl 18 . . . . . . . . 9  |-  ( ph  -> 
(/)  e.  J )
5958ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  (/) 
e.  J )
6059snssd 4340 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  { (/) }  C_  J
)
6156, 60fssd 6057 . . . . . 6  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ( U  \  dom  g )  X.  { (/)
} ) : ( U  \  dom  g
) --> J )
62 disjdif 4040 . . . . . . 7  |-  ( dom  g  i^i  ( U 
\  dom  g )
)  =  (/)
6362a1i 11 . . . . . 6  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( dom  g  i^i  ( U  \  dom  g
) )  =  (/) )
64 fun2 6067 . . . . . 6  |-  ( ( ( g : dom  g
--> J  /\  ( ( U  \  dom  g
)  X.  { (/) } ) : ( U 
\  dom  g ) --> J )  /\  ( dom  g  i^i  ( U  \  dom  g ) )  =  (/) )  -> 
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : ( dom  g  u.  ( U  \  dom  g ) ) --> J )
6554, 61, 63, 64syl21anc 1325 . . . . 5  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : ( dom  g  u.  ( U  \  dom  g ) ) --> J )
66 simprl2 1107 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  dom  g  C_  U )
67 undif 4049 . . . . . . 7  |-  ( dom  g  C_  U  <->  ( dom  g  u.  ( U  \  dom  g ) )  =  U )
6866, 67sylib 208 . . . . . 6  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( dom  g  u.  ( U  \  dom  g
) )  =  U )
6968feq2d 6031 . . . . 5  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) ) : ( dom  g  u.  ( U  \  dom  g ) ) --> J  <-> 
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : U --> J ) )
7065, 69mpbid 222 . . . 4  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : U --> J )
71 simpr 477 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )  ->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )
72 simprrl 804 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  ran  g Ref U )
7372adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )  ->  ran  g Ref U )
7471, 73eqbrtrd 4675 . . . . 5  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )  ->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) Ref U )
75 simpr 477 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )
7649simprd 479 . . . . . . . 8  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  U  =/=  (/) )
77 refun0 21318 . . . . . . . 8  |-  ( ( ran  g Ref U  /\  U  =/=  (/) )  -> 
( ran  g  u.  {
(/) } ) Ref U
)
7872, 76, 77syl2anc 693 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ran  g  u.  {
(/) } ) Ref U
)
7978adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ( ran  g  u.  { (/) } ) Ref U )
8075, 79eqbrtrd 4675 . . . . 5  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) ) Ref U )
81 rnxpss 5566 . . . . . . 7  |-  ran  (
( U  \  dom  g )  X.  { (/)
} )  C_  { (/) }
82 sssn 4358 . . . . . . 7  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  C_  { (/) }  <-> 
( ran  ( ( U  \  dom  g )  X.  { (/) } )  =  (/)  \/  ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  { (/)
} ) )
8381, 82mpbi 220 . . . . . 6  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  (/)  \/ 
ran  ( ( U 
\  dom  g )  X.  { (/) } )  =  { (/) } )
84 rnun 5541 . . . . . . . . 9  |-  ran  (
g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) )  =  ( ran  g  u.  ran  ( ( U  \  dom  g )  X.  { (/)
} ) )
85 uneq2 3761 . . . . . . . . 9  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  (/)  ->  ( ran  g  u. 
ran  ( ( U 
\  dom  g )  X.  { (/) } ) )  =  ( ran  g  u.  (/) ) )
8684, 85syl5eq 2668 . . . . . . . 8  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  (/)  ->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u.  (/) ) )
87 un0 3967 . . . . . . . 8  |-  ( ran  g  u.  (/) )  =  ran  g
8886, 87syl6eq 2672 . . . . . . 7  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  (/)  ->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )
89 uneq2 3761 . . . . . . . 8  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  { (/)
}  ->  ( ran  g  u.  ran  ( ( U  \  dom  g
)  X.  { (/) } ) )  =  ( ran  g  u.  { (/)
} ) )
9084, 89syl5eq 2668 . . . . . . 7  |-  ( ran  ( ( U  \  dom  g )  X.  { (/)
} )  =  { (/)
}  ->  ran  ( g  u.  ( ( U 
\  dom  g )  X.  { (/) } ) )  =  ( ran  g  u.  { (/) } ) )
9188, 90orim12i 538 . . . . . 6  |-  ( ( ran  ( ( U 
\  dom  g )  X.  { (/) } )  =  (/)  \/  ran  ( ( U  \  dom  g
)  X.  { (/) } )  =  { (/) } )  ->  ( ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g  \/  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) ) )
9283, 91mp1i 13 . . . . 5  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  -> 
( ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g  \/  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) ) )
9374, 80, 92mpjaodan 827 . . . 4  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) Ref U )
94 simprrr 805 . . . . . . 7  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  ran  g  e.  ( LocFin `
 J ) )
9594adantr 481 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )  ->  ran  g  e.  ( LocFin `
 J ) )
9671, 95eqeltrd 2701 . . . . 5  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ran  g )  ->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  e.  ( LocFin `  J )
)
9794adantr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ran  g  e.  ( LocFin `  J )
)
98 snfi 8038 . . . . . . . 8  |-  { (/) }  e.  Fin
9998a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  { (/) }  e.  Fin )
10059adantr 481 . . . . . . . . 9  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  (/)  e.  J )
101100snssd 4340 . . . . . . . 8  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  { (/) }  C_  J )
102101unissd 4462 . . . . . . 7  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  U. { (/) }  C_  U. J )
103 lfinun 21328 . . . . . . 7  |-  ( ( ran  g  e.  (
LocFin `  J )  /\  {
(/) }  e.  Fin  /\ 
U. { (/) }  C_  U. J )  ->  ( ran  g  u.  { (/) } )  e.  ( LocFin `  J ) )
10497, 99, 102, 103syl3anc 1326 . . . . . 6  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ( ran  g  u.  { (/) } )  e.  ( LocFin `  J )
)
10575, 104eqeltrd 2701 . . . . 5  |-  ( ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  =  ( ran  g  u. 
{ (/) } ) )  ->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  e.  ( LocFin `  J )
)
10696, 105, 92mpjaodan 827 . . . 4  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  e.  ( LocFin `  J )
)
107 refrel 21311 . . . . . . . . 9  |-  Rel  Ref
108107brrelex2i 5159 . . . . . . . 8  |-  ( V Ref U  ->  U  e.  _V )
109 difexg 4808 . . . . . . . 8  |-  ( U  e.  _V  ->  ( U  \  dom  g )  e.  _V )
11046, 108, 1093syl 18 . . . . . . 7  |-  ( ph  ->  ( U  \  dom  g )  e.  _V )
111110adantr 481 . . . . . 6  |-  ( (
ph  /\  U  =/=  (/) )  ->  ( U  \  dom  g )  e. 
_V )
112 p0ex 4853 . . . . . . 7  |-  { (/) }  e.  _V
113 xpexg 6960 . . . . . . 7  |-  ( ( ( U  \  dom  g )  e.  _V  /\ 
{ (/) }  e.  _V )  ->  ( ( U 
\  dom  g )  X.  { (/) } )  e. 
_V )
114112, 113mpan2 707 . . . . . 6  |-  ( ( U  \  dom  g
)  e.  _V  ->  ( ( U  \  dom  g )  X.  { (/)
} )  e.  _V )
115 vex 3203 . . . . . . 7  |-  g  e. 
_V
116 unexg 6959 . . . . . . 7  |-  ( ( g  e.  _V  /\  ( ( U  \  dom  g )  X.  { (/)
} )  e.  _V )  ->  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  e. 
_V )
117115, 116mpan 706 . . . . . 6  |-  ( ( ( U  \  dom  g )  X.  { (/)
} )  e.  _V  ->  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  e. 
_V )
118 feq1 6026 . . . . . . . 8  |-  ( f  =  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  -> 
( f : U --> J 
<->  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : U --> J ) )
119 rneq 5351 . . . . . . . . 9  |-  ( f  =  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  ->  ran  f  =  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) )
120119breq1d 4663 . . . . . . . 8  |-  ( f  =  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  -> 
( ran  f Ref U 
<->  ran  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) ) Ref U ) )
121119eleq1d 2686 . . . . . . . 8  |-  ( f  =  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  -> 
( ran  f  e.  ( LocFin `  J )  <->  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  e.  ( LocFin `  J )
) )
122118, 120, 1213anbi123d 1399 . . . . . . 7  |-  ( f  =  ( g  u.  ( ( U  \  dom  g )  X.  { (/)
} ) )  -> 
( ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J ) )  <->  ( (
g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) ) : U --> J  /\  ran  ( g  u.  ( ( U 
\  dom  g )  X.  { (/) } ) ) Ref U  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) )  e.  ( LocFin `  J )
) ) )
123122spcegv 3294 . . . . . 6  |-  ( ( g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) )  e.  _V  ->  ( ( ( g  u.  ( ( U 
\  dom  g )  X.  { (/) } ) ) : U --> J  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) Ref U  /\  ran  (
g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) )  e.  (
LocFin `  J ) )  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `
 J ) ) ) )
124111, 114, 117, 1234syl 19 . . . . 5  |-  ( (
ph  /\  U  =/=  (/) )  ->  ( (
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : U --> J  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) Ref U  /\  ran  (
g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) )  e.  (
LocFin `  J ) )  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `
 J ) ) ) )
125124imp 445 . . . 4  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) : U --> J  /\  ran  ( g  u.  (
( U  \  dom  g )  X.  { (/)
} ) ) Ref U  /\  ran  (
g  u.  ( ( U  \  dom  g
)  X.  { (/) } ) )  e.  (
LocFin `  J ) ) )  ->  E. f
( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J )
) )
12649, 70, 93, 106, 125syl13anc 1328 . . 3  |-  ( ( ( ph  /\  U  =/=  (/) )  /\  (
( Fun  g  /\  dom  g  C_  U  /\  ran  g  C_  J )  /\  ( ran  g Ref U  /\  ran  g  e.  ( LocFin `  J )
) ) )  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J ) ) )
12748, 126exlimddv 1863 . 2  |-  ( (
ph  /\  U  =/=  (/) )  ->  E. f
( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `  J )
) )
12843, 127pm2.61dane 2881 1  |-  ( ph  ->  E. f ( f : U --> J  /\  ran  f Ref U  /\  ran  f  e.  ( LocFin `
 J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888   Fincfn 7955   Topctop 20698   Refcref 21305   LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939  df-top 20699  df-topon 20716  df-ref 21308  df-locfin 21310
This theorem is referenced by:  pcmplfinf  29928
  Copyright terms: Public domain W3C validator