| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > locfinref | Structured version Visualization version Unicode version | ||
| Description: A locally finite
refinement of an open cover induces a locally finite
open cover with the original index set. This is fact 2 of
http://at.yorku.ca/p/a/c/a/02.pdf,
it is expressed by exposing a
function |
| Ref | Expression |
|---|---|
| locfinref.x |
|
| locfinref.1 |
|
| locfinref.2 |
|
| locfinref.3 |
|
| locfinref.4 |
|
| locfinref.5 |
|
| Ref | Expression |
|---|---|
| locfinref |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6086 |
. . . 4
| |
| 2 | simpr 477 |
. . . . 5
| |
| 3 | 2 | feq2d 6031 |
. . . 4
|
| 4 | 1, 3 | mpbiri 248 |
. . 3
|
| 5 | rn0 5377 |
. . . . 5
| |
| 6 | 0ex 4790 |
. . . . . 6
| |
| 7 | refref 21316 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | 5, 8 | eqbrtri 4674 |
. . . 4
|
| 10 | 9, 2 | syl5breqr 4691 |
. . 3
|
| 11 | sn0top 20803 |
. . . . . 6
| |
| 12 | 11 | a1i 11 |
. . . . 5
|
| 13 | eqidd 2623 |
. . . . 5
| |
| 14 | ral0 4076 |
. . . . . 6
| |
| 15 | 14 | a1i 11 |
. . . . 5
|
| 16 | 6 | unisn 4451 |
. . . . . . 7
|
| 17 | 16 | eqcomi 2631 |
. . . . . 6
|
| 18 | 5 | unieqi 4445 |
. . . . . . 7
|
| 19 | uni0 4465 |
. . . . . . 7
| |
| 20 | 18, 19 | eqtr2i 2645 |
. . . . . 6
|
| 21 | 17, 20 | islocfin 21320 |
. . . . 5
|
| 22 | 12, 13, 15, 21 | syl3anbrc 1246 |
. . . 4
|
| 23 | locfinref.2 |
. . . . . . . . 9
| |
| 24 | 23 | adantr 481 |
. . . . . . . 8
|
| 25 | 2 | unieqd 4446 |
. . . . . . . 8
|
| 26 | 24, 25 | eqtrd 2656 |
. . . . . . 7
|
| 27 | locfinref.x |
. . . . . . 7
| |
| 28 | 26, 27, 19 | 3eqtr3g 2679 |
. . . . . 6
|
| 29 | locfinref.5 |
. . . . . . . 8
| |
| 30 | locfintop 21324 |
. . . . . . . 8
| |
| 31 | 0top 20787 |
. . . . . . . 8
| |
| 32 | 29, 30, 31 | 3syl 18 |
. . . . . . 7
|
| 33 | 32 | adantr 481 |
. . . . . 6
|
| 34 | 28, 33 | mpbid 222 |
. . . . 5
|
| 35 | 34 | fveq2d 6195 |
. . . 4
|
| 36 | 22, 35 | eleqtrrd 2704 |
. . 3
|
| 37 | feq1 6026 |
. . . . 5
| |
| 38 | rneq 5351 |
. . . . . 6
| |
| 39 | 38 | breq1d 4663 |
. . . . 5
|
| 40 | 38 | eleq1d 2686 |
. . . . 5
|
| 41 | 37, 39, 40 | 3anbi123d 1399 |
. . . 4
|
| 42 | 6, 41 | spcev 3300 |
. . 3
|
| 43 | 4, 10, 36, 42 | syl3anc 1326 |
. 2
|
| 44 | locfinref.1 |
. . . . 5
| |
| 45 | locfinref.3 |
. . . . 5
| |
| 46 | locfinref.4 |
. . . . 5
| |
| 47 | 27, 44, 23, 45, 46, 29 | locfinreflem 29907 |
. . . 4
|
| 48 | 47 | adantr 481 |
. . 3
|
| 49 | simpl 473 |
. . . 4
| |
| 50 | simprl1 1106 |
. . . . . . . 8
| |
| 51 | fdmrn 6064 |
. . . . . . . 8
| |
| 52 | 50, 51 | sylib 208 |
. . . . . . 7
|
| 53 | simprl3 1108 |
. . . . . . 7
| |
| 54 | 52, 53 | fssd 6057 |
. . . . . 6
|
| 55 | fconstg 6092 |
. . . . . . . 8
| |
| 56 | 6, 55 | mp1i 13 |
. . . . . . 7
|
| 57 | 0opn 20709 |
. . . . . . . . . 10
| |
| 58 | 29, 30, 57 | 3syl 18 |
. . . . . . . . 9
|
| 59 | 58 | ad2antrr 762 |
. . . . . . . 8
|
| 60 | 59 | snssd 4340 |
. . . . . . 7
|
| 61 | 56, 60 | fssd 6057 |
. . . . . 6
|
| 62 | disjdif 4040 |
. . . . . . 7
| |
| 63 | 62 | a1i 11 |
. . . . . 6
|
| 64 | fun2 6067 |
. . . . . 6
| |
| 65 | 54, 61, 63, 64 | syl21anc 1325 |
. . . . 5
|
| 66 | simprl2 1107 |
. . . . . . 7
| |
| 67 | undif 4049 |
. . . . . . 7
| |
| 68 | 66, 67 | sylib 208 |
. . . . . 6
|
| 69 | 68 | feq2d 6031 |
. . . . 5
|
| 70 | 65, 69 | mpbid 222 |
. . . 4
|
| 71 | simpr 477 |
. . . . . 6
| |
| 72 | simprrl 804 |
. . . . . . 7
| |
| 73 | 72 | adantr 481 |
. . . . . 6
|
| 74 | 71, 73 | eqbrtrd 4675 |
. . . . 5
|
| 75 | simpr 477 |
. . . . . 6
| |
| 76 | 49 | simprd 479 |
. . . . . . . 8
|
| 77 | refun0 21318 |
. . . . . . . 8
| |
| 78 | 72, 76, 77 | syl2anc 693 |
. . . . . . 7
|
| 79 | 78 | adantr 481 |
. . . . . 6
|
| 80 | 75, 79 | eqbrtrd 4675 |
. . . . 5
|
| 81 | rnxpss 5566 |
. . . . . . 7
| |
| 82 | sssn 4358 |
. . . . . . 7
| |
| 83 | 81, 82 | mpbi 220 |
. . . . . 6
|
| 84 | rnun 5541 |
. . . . . . . . 9
| |
| 85 | uneq2 3761 |
. . . . . . . . 9
| |
| 86 | 84, 85 | syl5eq 2668 |
. . . . . . . 8
|
| 87 | un0 3967 |
. . . . . . . 8
| |
| 88 | 86, 87 | syl6eq 2672 |
. . . . . . 7
|
| 89 | uneq2 3761 |
. . . . . . . 8
| |
| 90 | 84, 89 | syl5eq 2668 |
. . . . . . 7
|
| 91 | 88, 90 | orim12i 538 |
. . . . . 6
|
| 92 | 83, 91 | mp1i 13 |
. . . . 5
|
| 93 | 74, 80, 92 | mpjaodan 827 |
. . . 4
|
| 94 | simprrr 805 |
. . . . . . 7
| |
| 95 | 94 | adantr 481 |
. . . . . 6
|
| 96 | 71, 95 | eqeltrd 2701 |
. . . . 5
|
| 97 | 94 | adantr 481 |
. . . . . . 7
|
| 98 | snfi 8038 |
. . . . . . . 8
| |
| 99 | 98 | a1i 11 |
. . . . . . 7
|
| 100 | 59 | adantr 481 |
. . . . . . . . 9
|
| 101 | 100 | snssd 4340 |
. . . . . . . 8
|
| 102 | 101 | unissd 4462 |
. . . . . . 7
|
| 103 | lfinun 21328 |
. . . . . . 7
| |
| 104 | 97, 99, 102, 103 | syl3anc 1326 |
. . . . . 6
|
| 105 | 75, 104 | eqeltrd 2701 |
. . . . 5
|
| 106 | 96, 105, 92 | mpjaodan 827 |
. . . 4
|
| 107 | refrel 21311 |
. . . . . . . . 9
| |
| 108 | 107 | brrelex2i 5159 |
. . . . . . . 8
|
| 109 | difexg 4808 |
. . . . . . . 8
| |
| 110 | 46, 108, 109 | 3syl 18 |
. . . . . . 7
|
| 111 | 110 | adantr 481 |
. . . . . 6
|
| 112 | p0ex 4853 |
. . . . . . 7
| |
| 113 | xpexg 6960 |
. . . . . . 7
| |
| 114 | 112, 113 | mpan2 707 |
. . . . . 6
|
| 115 | vex 3203 |
. . . . . . 7
| |
| 116 | unexg 6959 |
. . . . . . 7
| |
| 117 | 115, 116 | mpan 706 |
. . . . . 6
|
| 118 | feq1 6026 |
. . . . . . . 8
| |
| 119 | rneq 5351 |
. . . . . . . . 9
| |
| 120 | 119 | breq1d 4663 |
. . . . . . . 8
|
| 121 | 119 | eleq1d 2686 |
. . . . . . . 8
|
| 122 | 118, 120, 121 | 3anbi123d 1399 |
. . . . . . 7
|
| 123 | 122 | spcegv 3294 |
. . . . . 6
|
| 124 | 111, 114, 117, 123 | 4syl 19 |
. . . . 5
|
| 125 | 124 | imp 445 |
. . . 4
|
| 126 | 49, 70, 93, 106, 125 | syl13anc 1328 |
. . 3
|
| 127 | 48, 126 | exlimddv 1863 |
. 2
|
| 128 | 43, 127 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-fin 7959 df-r1 8627 df-rank 8628 df-card 8765 df-ac 8939 df-top 20699 df-topon 20716 df-ref 21308 df-locfin 21310 |
| This theorem is referenced by: pcmplfinf 29928 |
| Copyright terms: Public domain | W3C validator |