MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem2 Structured version   Visualization version   Unicode version

Theorem 1wlkdlem2 26998
Description: Lemma 2 for 1wlkd 27001. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p  |-  P  = 
<" X Y ">
1wlkd.f  |-  F  = 
<" J ">
1wlkd.x  |-  ( ph  ->  X  e.  V )
1wlkd.y  |-  ( ph  ->  Y  e.  V )
1wlkd.l  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
1wlkd.j  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
Assertion
Ref Expression
1wlkdlem2  |-  ( ph  ->  X  e.  ( I `
 J ) )

Proof of Theorem 1wlkdlem2
StepHypRef Expression
1 1wlkd.x . . . . 5  |-  ( ph  ->  X  e.  V )
2 snidg 4206 . . . . 5  |-  ( X  e.  V  ->  X  e.  { X } )
31, 2syl 17 . . . 4  |-  ( ph  ->  X  e.  { X } )
43adantr 481 . . 3  |-  ( (
ph  /\  X  =  Y )  ->  X  e.  { X } )
5 1wlkd.l . . 3  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
64, 5eleqtrrd 2704 . 2  |-  ( (
ph  /\  X  =  Y )  ->  X  e.  ( I `  J
) )
7 1wlkd.j . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
8 1wlkd.y . . . . . 6  |-  ( ph  ->  Y  e.  V )
98adantr 481 . . . . 5  |-  ( (
ph  /\  X  =/=  Y )  ->  Y  e.  V )
10 prssg 4350 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( ( X  e.  ( I `  J
)  /\  Y  e.  ( I `  J
) )  <->  { X ,  Y }  C_  (
I `  J )
) )
111, 9, 10syl2an2r 876 . . . 4  |-  ( (
ph  /\  X  =/=  Y )  ->  ( ( X  e.  ( I `  J )  /\  Y  e.  ( I `  J
) )  <->  { X ,  Y }  C_  (
I `  J )
) )
127, 11mpbird 247 . . 3  |-  ( (
ph  /\  X  =/=  Y )  ->  ( X  e.  ( I `  J
)  /\  Y  e.  ( I `  J
) ) )
1312simpld 475 . 2  |-  ( (
ph  /\  X  =/=  Y )  ->  X  e.  ( I `  J
) )
146, 13pm2.61dane 2881 1  |-  ( ph  ->  X  e.  ( I `
 J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888   <"cs1 13294   <"cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180
This theorem is referenced by:  1wlkdlem3  26999  1wlkdlem4  27000
  Copyright terms: Public domain W3C validator