MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem4 Structured version   Visualization version   Unicode version

Theorem 1wlkdlem4 27000
Description: Lemma 4 for 1wlkd 27001. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p  |-  P  = 
<" X Y ">
1wlkd.f  |-  F  = 
<" J ">
1wlkd.x  |-  ( ph  ->  X  e.  V )
1wlkd.y  |-  ( ph  ->  Y  e.  V )
1wlkd.l  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
1wlkd.j  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
Assertion
Ref Expression
1wlkdlem4  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
Distinct variable groups:    k, F    k, I    P, k
Allowed substitution hints:    ph( k)    J( k)    V( k)    X( k)    Y( k)

Proof of Theorem 1wlkdlem4
StepHypRef Expression
1 1wlkd.f . . . . . . . . . 10  |-  F  = 
<" J ">
21fveq1i 6192 . . . . . . . . 9  |-  ( F `
 0 )  =  ( <" J "> `  0 )
3 1wlkd.p . . . . . . . . . . . 12  |-  P  = 
<" X Y ">
4 1wlkd.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  V )
5 1wlkd.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  V )
6 1wlkd.l . . . . . . . . . . . 12  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  J )  =  { X } )
7 1wlkd.j . . . . . . . . . . . 12  |-  ( (
ph  /\  X  =/=  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
83, 1, 4, 5, 6, 71wlkdlem2 26998 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( I `
 J ) )
98elfvexd 6222 . . . . . . . . . 10  |-  ( ph  ->  J  e.  _V )
10 s1fv 13390 . . . . . . . . . 10  |-  ( J  e.  _V  ->  ( <" J "> `  0 )  =  J )
119, 10syl 17 . . . . . . . . 9  |-  ( ph  ->  ( <" J "> `  0 )  =  J )
122, 11syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  =  J )
1312fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( I `  ( F `  0 )
)  =  ( I `
 J ) )
1413adantr 481 . . . . . 6  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  ( F `  0 ) )  =  ( I `  J ) )
1514, 6eqtrd 2656 . . . . 5  |-  ( (
ph  /\  X  =  Y )  ->  (
I `  ( F `  0 ) )  =  { X }
)
16 df-ne 2795 . . . . . . 7  |-  ( X  =/=  Y  <->  -.  X  =  Y )
1716, 7sylan2br 493 . . . . . 6  |-  ( (
ph  /\  -.  X  =  Y )  ->  { X ,  Y }  C_  (
I `  J )
)
1813adantr 481 . . . . . 6  |-  ( (
ph  /\  -.  X  =  Y )  ->  (
I `  ( F `  0 ) )  =  ( I `  J ) )
1917, 18sseqtr4d 3642 . . . . 5  |-  ( (
ph  /\  -.  X  =  Y )  ->  { X ,  Y }  C_  (
I `  ( F `  0 ) ) )
2015, 19ifpimpda 1028 . . . 4  |-  ( ph  -> if- ( X  =  Y ,  ( I `  ( F `  0 ) )  =  { X } ,  { X ,  Y }  C_  (
I `  ( F `  0 ) ) ) )
213fveq1i 6192 . . . . . 6  |-  ( P `
 0 )  =  ( <" X Y "> `  0
)
22 s2fv0 13632 . . . . . . 7  |-  ( X  e.  V  ->  ( <" X Y "> `  0 )  =  X )
234, 22syl 17 . . . . . 6  |-  ( ph  ->  ( <" X Y "> `  0
)  =  X )
2421, 23syl5eq 2668 . . . . 5  |-  ( ph  ->  ( P `  0
)  =  X )
253fveq1i 6192 . . . . . 6  |-  ( P `
 1 )  =  ( <" X Y "> `  1
)
26 s2fv1 13633 . . . . . . 7  |-  ( Y  e.  V  ->  ( <" X Y "> `  1 )  =  Y )
275, 26syl 17 . . . . . 6  |-  ( ph  ->  ( <" X Y "> `  1
)  =  Y )
2825, 27syl5eq 2668 . . . . 5  |-  ( ph  ->  ( P `  1
)  =  Y )
29 eqeq12 2635 . . . . . 6  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  -> 
( ( P ` 
0 )  =  ( P `  1 )  <-> 
X  =  Y ) )
30 sneq 4187 . . . . . . . 8  |-  ( ( P `  0 )  =  X  ->  { ( P `  0 ) }  =  { X } )
3130adantr 481 . . . . . . 7  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  ->  { ( P ` 
0 ) }  =  { X } )
3231eqeq2d 2632 . . . . . 6  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  -> 
( ( I `  ( F `  0 ) )  =  { ( P `  0 ) }  <->  ( I `  ( F `  0 ) )  =  { X } ) )
33 preq12 4270 . . . . . . 7  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  ->  { ( P ` 
0 ) ,  ( P `  1 ) }  =  { X ,  Y } )
3433sseq1d 3632 . . . . . 6  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  -> 
( { ( P `
 0 ) ,  ( P `  1
) }  C_  (
I `  ( F `  0 ) )  <->  { X ,  Y }  C_  ( I `  ( F `  0 )
) ) )
3529, 32, 34ifpbi123d 1027 . . . . 5  |-  ( ( ( P `  0
)  =  X  /\  ( P `  1 )  =  Y )  -> 
(if- ( ( P `
 0 )  =  ( P `  1
) ,  ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) } ,  { ( P ` 
0 ) ,  ( P `  1 ) }  C_  ( I `  ( F `  0
) ) )  <-> if- ( X  =  Y ,  ( I `
 ( F ` 
0 ) )  =  { X } ,  { X ,  Y }  C_  ( I `  ( F `  0 )
) ) ) )
3624, 28, 35syl2anc 693 . . . 4  |-  ( ph  ->  (if- ( ( P `
 0 )  =  ( P `  1
) ,  ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) } ,  { ( P ` 
0 ) ,  ( P `  1 ) }  C_  ( I `  ( F `  0
) ) )  <-> if- ( X  =  Y ,  ( I `
 ( F ` 
0 ) )  =  { X } ,  { X ,  Y }  C_  ( I `  ( F `  0 )
) ) ) )
3720, 36mpbird 247 . . 3  |-  ( ph  -> if- ( ( P ` 
0 )  =  ( P `  1 ) ,  ( I `  ( F `  0 ) )  =  { ( P `  0 ) } ,  { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
) ) )
38 c0ex 10034 . . . 4  |-  0  e.  _V
39 oveq1 6657 . . . . . 6  |-  ( k  =  0  ->  (
k  +  1 )  =  ( 0  +  1 ) )
40 0p1e1 11132 . . . . . 6  |-  ( 0  +  1 )  =  1
4139, 40syl6eq 2672 . . . . 5  |-  ( k  =  0  ->  (
k  +  1 )  =  1 )
42 wkslem2 26504 . . . . 5  |-  ( ( k  =  0  /\  ( k  +  1 )  =  1 )  ->  (if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  <-> if- ( ( P ` 
0 )  =  ( P `  1 ) ,  ( I `  ( F `  0 ) )  =  { ( P `  0 ) } ,  { ( P `  0 ) ,  ( P ` 
1 ) }  C_  ( I `  ( F `  0 )
) ) ) )
4341, 42mpdan 702 . . . 4  |-  ( k  =  0  ->  (if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <-> if- ( ( P `  0 )  =  ( P ` 
1 ) ,  ( I `  ( F `
 0 ) )  =  { ( P `
 0 ) } ,  { ( P `
 0 ) ,  ( P `  1
) }  C_  (
I `  ( F `  0 ) ) ) ) )
4438, 43ralsn 4222 . . 3  |-  ( A. k  e.  { 0 }if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <-> if- ( ( P `  0 )  =  ( P ` 
1 ) ,  ( I `  ( F `
 0 ) )  =  { ( P `
 0 ) } ,  { ( P `
 0 ) ,  ( P `  1
) }  C_  (
I `  ( F `  0 ) ) ) )
4537, 44sylibr 224 . 2  |-  ( ph  ->  A. k  e.  {
0 }if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
461fveq2i 6194 . . . . . . 7  |-  ( # `  F )  =  (
# `  <" J "> )
47 s1len 13385 . . . . . . 7  |-  ( # `  <" J "> )  =  1
4846, 47eqtri 2644 . . . . . 6  |-  ( # `  F )  =  1
4948oveq2i 6661 . . . . 5  |-  ( 0..^ ( # `  F
) )  =  ( 0..^ 1 )
50 fzo01 12550 . . . . 5  |-  ( 0..^ 1 )  =  {
0 }
5149, 50eqtri 2644 . . . 4  |-  ( 0..^ ( # `  F
) )  =  {
0 }
5251a1i 11 . . 3  |-  ( ph  ->  ( 0..^ ( # `  F ) )  =  { 0 } )
5352raleqdv 3144 . 2  |-  ( ph  ->  ( A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <->  A. k  e.  { 0 }if- (
( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) )
5445, 53mpbird 247 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   {cpr 4179   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939  ..^cfzo 12465   #chash 13117   <"cs1 13294   <"cs2 13586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593
This theorem is referenced by:  1wlkd  27001
  Copyright terms: Public domain W3C validator