| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu1 | Structured version Visualization version Unicode version | ||
| Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 11-Nov-2019.) |
| Ref | Expression |
|---|---|
| 2eu1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu2ex 2546 |
. . . . 5
| |
| 2 | df-mo 2475 |
. . . . . . 7
| |
| 3 | 2 | albii 1747 |
. . . . . 6
|
| 4 | euim 2523 |
. . . . . . 7
| |
| 5 | 4 | ex 450 |
. . . . . 6
|
| 6 | 3, 5 | syl5bi 232 |
. . . . 5
|
| 7 | 1, 6 | syl 17 |
. . . 4
|
| 8 | 7 | pm2.43b 55 |
. . 3
|
| 9 | 2euswap 2548 |
. . . 4
| |
| 10 | 8, 9 | syld 47 |
. . 3
|
| 11 | 8, 10 | jcad 555 |
. 2
|
| 12 | 2exeu 2549 |
. 2
| |
| 13 | 11, 12 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: 2eu2 2554 2eu3 2555 2eu5 2557 |
| Copyright terms: Public domain | W3C validator |