| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu4 | Structured version Visualization version Unicode version | ||
| Description: This theorem provides us
with a definition of double existential
uniqueness ("exactly one |
| Ref | Expression |
|---|---|
| 2eu4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2496 |
. . 3
| |
| 2 | eu5 2496 |
. . . 4
| |
| 3 | excom 2042 |
. . . . 5
| |
| 4 | 3 | anbi1i 731 |
. . . 4
|
| 5 | 2, 4 | bitri 264 |
. . 3
|
| 6 | 1, 5 | anbi12i 733 |
. 2
|
| 7 | anandi 871 |
. 2
| |
| 8 | 2mo2 2550 |
. . 3
| |
| 9 | 8 | anbi2i 730 |
. 2
|
| 10 | 6, 7, 9 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: 2eu5 2557 2eu6 2558 |
| Copyright terms: Public domain | W3C validator |