MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2iunin Structured version   Visualization version   Unicode version

Theorem 2iunin 4588
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
2iunin  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Distinct variable groups:    x, B    y, C    x, D    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem 2iunin
StepHypRef Expression
1 iunin2 4584 . . . 4  |-  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
21a1i 11 . . 3  |-  ( x  e.  A  ->  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
)
32iuneq2i 4539 . 2  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )
4 iunin1 4585 . 2  |-  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )  =  (
U_ x  e.  A  C  i^i  U_ y  e.  B  D )
53, 4eqtri 2644 1  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990    i^i cin 3573   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  fpar  7281
  Copyright terms: Public domain W3C validator