MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpar Structured version   Visualization version   Unicode version

Theorem fpar 7281
Description: Merge two functions in parallel. Use as the second argument of a composition with a (2-place) operation to build compound operations such as  z  =  ( ( sqr `  x
)  +  ( abs `  y ) ). (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Hypothesis
Ref Expression
fpar.1  |-  H  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
Assertion
Ref Expression
fpar  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  H  =  ( x  e.  A ,  y  e.  B  |->  <. ( F `  x ) ,  ( G `  y ) >. )
)
Distinct variable groups:    x, y, A    x, B, y    x, F, y    x, G, y
Allowed substitution hints:    H( x, y)

Proof of Theorem fpar
StepHypRef Expression
1 fparlem3 7279 . . 3  |-  ( F  Fn  A  ->  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  =  U_ x  e.  A  ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) ) )
2 fparlem4 7280 . . 3  |-  ( G  Fn  B  ->  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  U_ y  e.  B  ( ( _V  X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) ) )
31, 2ineqan12d 3816 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )  =  ( U_ x  e.  A  (
( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  U_ y  e.  B  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) ) )
4 fpar.1 . 2  |-  H  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( F  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( G  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
5 opex 4932 . . . 4  |-  <. ( F `  x ) ,  ( G `  y ) >.  e.  _V
65dfmpt2 7267 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y
>. ,  <. ( F `
 x ) ,  ( G `  y
) >. >. }
7 inxp 5254 . . . . . . . 8  |-  ( ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  ( ( ( { x }  X.  _V )  i^i  ( _V  X.  { y } ) )  X.  (
( { ( F `
 x ) }  X.  _V )  i^i  ( _V  X.  {
( G `  y
) } ) ) )
8 inxp 5254 . . . . . . . . . 10  |-  ( ( { x }  X.  _V )  i^i  ( _V  X.  { y } ) )  =  ( ( { x }  i^i  _V )  X.  ( _V  i^i  { y } ) )
9 inv1 3970 . . . . . . . . . . 11  |-  ( { x }  i^i  _V )  =  { x }
10 incom 3805 . . . . . . . . . . . 12  |-  ( _V 
i^i  { y } )  =  ( { y }  i^i  _V )
11 inv1 3970 . . . . . . . . . . . 12  |-  ( { y }  i^i  _V )  =  { y }
1210, 11eqtri 2644 . . . . . . . . . . 11  |-  ( _V 
i^i  { y } )  =  { y }
139, 12xpeq12i 5137 . . . . . . . . . 10  |-  ( ( { x }  i^i  _V )  X.  ( _V 
i^i  { y } ) )  =  ( { x }  X.  {
y } )
14 vex 3203 . . . . . . . . . . 11  |-  x  e. 
_V
15 vex 3203 . . . . . . . . . . 11  |-  y  e. 
_V
1614, 15xpsn 6407 . . . . . . . . . 10  |-  ( { x }  X.  {
y } )  =  { <. x ,  y
>. }
178, 13, 163eqtri 2648 . . . . . . . . 9  |-  ( ( { x }  X.  _V )  i^i  ( _V  X.  { y } ) )  =  { <. x ,  y >. }
18 inxp 5254 . . . . . . . . . 10  |-  ( ( { ( F `  x ) }  X.  _V )  i^i  ( _V  X.  { ( G `
 y ) } ) )  =  ( ( { ( F `
 x ) }  i^i  _V )  X.  ( _V  i^i  {
( G `  y
) } ) )
19 inv1 3970 . . . . . . . . . . 11  |-  ( { ( F `  x
) }  i^i  _V )  =  { ( F `  x ) }
20 incom 3805 . . . . . . . . . . . 12  |-  ( _V 
i^i  { ( G `  y ) } )  =  ( { ( G `  y ) }  i^i  _V )
21 inv1 3970 . . . . . . . . . . . 12  |-  ( { ( G `  y
) }  i^i  _V )  =  { ( G `  y ) }
2220, 21eqtri 2644 . . . . . . . . . . 11  |-  ( _V 
i^i  { ( G `  y ) } )  =  { ( G `
 y ) }
2319, 22xpeq12i 5137 . . . . . . . . . 10  |-  ( ( { ( F `  x ) }  i^i  _V )  X.  ( _V 
i^i  { ( G `  y ) } ) )  =  ( { ( F `  x
) }  X.  {
( G `  y
) } )
24 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
25 fvex 6201 . . . . . . . . . . 11  |-  ( G `
 y )  e. 
_V
2624, 25xpsn 6407 . . . . . . . . . 10  |-  ( { ( F `  x
) }  X.  {
( G `  y
) } )  =  { <. ( F `  x ) ,  ( G `  y )
>. }
2718, 23, 263eqtri 2648 . . . . . . . . 9  |-  ( ( { ( F `  x ) }  X.  _V )  i^i  ( _V  X.  { ( G `
 y ) } ) )  =  { <. ( F `  x
) ,  ( G `
 y ) >. }
2817, 27xpeq12i 5137 . . . . . . . 8  |-  ( ( ( { x }  X.  _V )  i^i  ( _V  X.  { y } ) )  X.  (
( { ( F `
 x ) }  X.  _V )  i^i  ( _V  X.  {
( G `  y
) } ) ) )  =  ( {
<. x ,  y >. }  X.  { <. ( F `  x ) ,  ( G `  y ) >. } )
29 opex 4932 . . . . . . . . 9  |-  <. x ,  y >.  e.  _V
3029, 5xpsn 6407 . . . . . . . 8  |-  ( {
<. x ,  y >. }  X.  { <. ( F `  x ) ,  ( G `  y ) >. } )  =  { <. <. x ,  y >. ,  <. ( F `  x ) ,  ( G `  y ) >. >. }
317, 28, 303eqtri 2648 . . . . . . 7  |-  ( ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  { <. <.
x ,  y >. ,  <. ( F `  x ) ,  ( G `  y )
>. >. }
3231a1i 11 . . . . . 6  |-  ( y  e.  B  ->  (
( ( { x }  X.  _V )  X.  ( { ( F `
 x ) }  X.  _V ) )  i^i  ( ( _V 
X.  { y } )  X.  ( _V 
X.  { ( G `
 y ) } ) ) )  =  { <. <. x ,  y
>. ,  <. ( F `
 x ) ,  ( G `  y
) >. >. } )
3332iuneq2i 4539 . . . . 5  |-  U_ y  e.  B  ( (
( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  U_ y  e.  B  { <. <. x ,  y >. ,  <. ( F `  x ) ,  ( G `  y ) >. >. }
3433a1i 11 . . . 4  |-  ( x  e.  A  ->  U_ y  e.  B  ( (
( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  U_ y  e.  B  { <. <. x ,  y >. ,  <. ( F `  x ) ,  ( G `  y ) >. >. } )
3534iuneq2i 4539 . . 3  |-  U_ x  e.  A  U_ y  e.  B  ( ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  U_ x  e.  A  U_ y  e.  B  { <. <. x ,  y >. ,  <. ( F `  x ) ,  ( G `  y ) >. >. }
36 2iunin 4588 . . 3  |-  U_ x  e.  A  U_ y  e.  B  ( ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )  =  ( U_ x  e.  A  (
( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  U_ y  e.  B  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )
376, 35, 363eqtr2i 2650 . 2  |-  ( x  e.  A ,  y  e.  B  |->  <. ( F `  x ) ,  ( G `  y ) >. )  =  ( U_ x  e.  A  ( ( { x }  X.  _V )  X.  ( { ( F `  x ) }  X.  _V ) )  i^i  U_ y  e.  B  (
( _V  X.  {
y } )  X.  ( _V  X.  {
( G `  y
) } ) ) )
383, 4, 373eqtr4g 2681 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  H  =  ( x  e.  A ,  y  e.  B  |->  <. ( F `  x ) ,  ( G `  y ) >. )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {csn 4177   <.cop 4183   U_ciun 4520    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118    Fn wfn 5883   ` cfv 5888    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator