![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imdistanri | Structured version Visualization version Unicode version |
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
imdistanri.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imdistanri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanri.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | com12 32 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | impac 651 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: tc2 8618 prmodvdslcmf 15751 monmat2matmon 20629 cnextcn 21871 umgredg 26033 crctcshwlkn0lem5 26706 tpr2rico 29958 bj-snsetex 32951 bj-restuni 33050 poimirlem26 33435 seqpo 33543 isdrngo2 33757 pm10.55 38568 2pm13.193VD 39139 |
Copyright terms: Public domain | W3C validator |