Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu5a Structured version   Visualization version   Unicode version

Theorem 2reu5a 41177
Description: Double restricted existential uniqueness in terms of restricted existence and restricted "at most one." (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5a  |-  ( E! x  e.  A  E! y  e.  B  ph  <->  ( E. x  e.  A  ( E. y  e.  B  ph 
/\  E* y  e.  B  ph )  /\  E* x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph ) ) )

Proof of Theorem 2reu5a
StepHypRef Expression
1 reu5 3159 . 2  |-  ( E! x  e.  A  E! y  e.  B  ph  <->  ( E. x  e.  A  E! y  e.  B  ph  /\  E* x  e.  A  E! y  e.  B  ph ) )
2 reu5 3159 . . . 4  |-  ( E! y  e.  B  ph  <->  ( E. y  e.  B  ph 
/\  E* y  e.  B  ph ) )
32rexbii 3041 . . 3  |-  ( E. x  e.  A  E! y  e.  B  ph  <->  E. x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph ) )
42rmobii 3133 . . 3  |-  ( E* x  e.  A  E! y  e.  B  ph  <->  E* x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph ) )
53, 4anbi12i 733 . 2  |-  ( ( E. x  e.  A  E! y  e.  B  ph 
/\  E* x  e.  A  E! y  e.  B  ph )  <->  ( E. x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph )  /\  E* x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph ) ) )
61, 5bitri 264 1  |-  ( E! x  e.  A  E! y  e.  B  ph  <->  ( E. x  e.  A  ( E. y  e.  B  ph 
/\  E* y  e.  B  ph )  /\  E* x  e.  A  ( E. y  e.  B  ph  /\  E* y  e.  B  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wrex 2913   E!wreu 2914   E*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-rex 2918  df-reu 2919  df-rmo 2920
This theorem is referenced by:  2reu1  41186
  Copyright terms: Public domain W3C validator