| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu1 | Structured version Visualization version Unicode version | ||
| Description: Double restricted existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one, analogous to 2eu1 2553. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2reu5a 41177 |
. . . . . 6
| |
| 2 | simprr 796 |
. . . . . . . . . . . 12
| |
| 3 | rsp 2929 |
. . . . . . . . . . . . . 14
| |
| 4 | 3 | adantr 481 |
. . . . . . . . . . . . 13
|
| 5 | 4 | impcom 446 |
. . . . . . . . . . . 12
|
| 6 | 2, 5 | jca 554 |
. . . . . . . . . . 11
|
| 7 | 6 | ex 450 |
. . . . . . . . . 10
|
| 8 | 7 | rmoimia 3408 |
. . . . . . . . 9
|
| 9 | nfra1 2941 |
. . . . . . . . . 10
| |
| 10 | 9 | rmoanim 41179 |
. . . . . . . . 9
|
| 11 | 8, 10 | sylib 208 |
. . . . . . . 8
|
| 12 | 11 | ancrd 577 |
. . . . . . 7
|
| 13 | 2rmoswap 41184 |
. . . . . . . . 9
| |
| 14 | 13 | com12 32 |
. . . . . . . 8
|
| 15 | 14 | imdistani 726 |
. . . . . . 7
|
| 16 | 12, 15 | syl6 35 |
. . . . . 6
|
| 17 | 1, 16 | simplbiim 659 |
. . . . 5
|
| 18 | 2reu2rex 41183 |
. . . . . 6
| |
| 19 | rexcom 3099 |
. . . . . . 7
| |
| 20 | 18, 19 | sylib 208 |
. . . . . 6
|
| 21 | 18, 20 | jca 554 |
. . . . 5
|
| 22 | 17, 21 | jctild 566 |
. . . 4
|
| 23 | reu5 3159 |
. . . . . 6
| |
| 24 | reu5 3159 |
. . . . . 6
| |
| 25 | 23, 24 | anbi12i 733 |
. . . . 5
|
| 26 | an4 865 |
. . . . 5
| |
| 27 | 25, 26 | bitri 264 |
. . . 4
|
| 28 | 22, 27 | syl6ibr 242 |
. . 3
|
| 29 | 28 | com12 32 |
. 2
|
| 30 | 2rexreu 41185 |
. 2
| |
| 31 | 29, 30 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 |
| This theorem is referenced by: 2reu2 41187 2reu3 41188 |
| Copyright terms: Public domain | W3C validator |