| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sb6rf | Structured version Visualization version Unicode version | ||
| Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.) |
| Ref | Expression |
|---|---|
| 2sb5rf.1 |
|
| 2sb5rf.2 |
|
| Ref | Expression |
|---|---|
| 2sb6rf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12r 2112 |
. . . . 5
| |
| 2 | sbequ12r 2112 |
. . . . 5
| |
| 3 | 1, 2 | sylan9bb 736 |
. . . 4
|
| 4 | 3 | pm5.74i 260 |
. . 3
|
| 5 | 4 | 2albii 1748 |
. 2
|
| 6 | 2sb5rf.2 |
. . . . 5
| |
| 7 | 6 | 19.23 2080 |
. . . 4
|
| 8 | 7 | albii 1747 |
. . 3
|
| 9 | 2sb5rf.1 |
. . . 4
| |
| 10 | 9 | 19.23 2080 |
. . 3
|
| 11 | 8, 10 | bitri 264 |
. 2
|
| 12 | 2ax6e 2450 |
. . 3
| |
| 13 | pm5.5 351 |
. . 3
| |
| 14 | 12, 13 | ax-mp 5 |
. 2
|
| 15 | 5, 11, 14 | 3bitrri 287 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |