MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb7f Structured version   Visualization version   Unicode version

Theorem sb7f 2453
Description: This version of dfsb7 2455 does not require that  ph and  z be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1839 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1881 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sb7f.1  |-  F/ z
ph
Assertion
Ref Expression
sb7f  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sb7f
StepHypRef Expression
1 sb7f.1 . . . 4  |-  F/ z
ph
21sb5f 2386 . . 3  |-  ( [ z  /  x ] ph 
<->  E. x ( x  =  z  /\  ph ) )
32sbbii 1887 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] E. x ( x  =  z  /\  ph ) )
41sbco2 2415 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
5 sb5 2430 . 2  |-  ( [ y  /  z ] E. x ( x  =  z  /\  ph ) 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
63, 4, 53bitr3i 290 1  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  sb7h  2454  dfsb7  2455
  Copyright terms: Public domain W3C validator