Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iotain Structured version   Visualization version   Unicode version

Theorem iotain 38618
Description: Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
iotain  |-  ( E! x ph  ->  |^| { x  |  ph }  =  ( iota x ph )
)

Proof of Theorem iotain
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2474 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
2 vex 3203 . . . . 5  |-  y  e. 
_V
32intsn 4513 . . . 4  |-  |^| { y }  =  y
4 nfa1 2028 . . . . . . 7  |-  F/ x A. x ( ph  <->  x  =  y )
5 sp 2053 . . . . . . 7  |-  ( A. x ( ph  <->  x  =  y )  ->  ( ph 
<->  x  =  y ) )
64, 5abbid 2740 . . . . . 6  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
x  |  x  =  y } )
7 df-sn 4178 . . . . . 6  |-  { y }  =  { x  |  x  =  y }
86, 7syl6eqr 2674 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
y } )
98inteqd 4480 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  |^| { x  |  ph }  =  |^| { y } )
10 iotaval 5862 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
113, 9, 103eqtr4a 2682 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  |^| { x  |  ph }  =  ( iota x ph )
)
1211exlimiv 1858 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  |^| { x  | 
ph }  =  ( iota x ph )
)
131, 12sylbi 207 1  |-  ( E! x ph  ->  |^| { x  |  ph }  =  ( iota x ph )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704   E!weu 2470   {cab 2608   {csn 4177   |^|cint 4475   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-un 3579  df-in 3581  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-iota 5851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator