MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2wlkdlem6 Structured version   Visualization version   Unicode version

Theorem 2wlkdlem6 26827
Description: Lemma 6 for 2wlkd 26832. (Contributed by AV, 23-Jan-2021.)
Hypotheses
Ref Expression
2wlkd.p  |-  P  = 
<" A B C ">
2wlkd.f  |-  F  = 
<" J K ">
2wlkd.s  |-  ( ph  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )
2wlkd.n  |-  ( ph  ->  ( A  =/=  B  /\  B  =/=  C
) )
2wlkd.e  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 J )  /\  { B ,  C }  C_  ( I `  K
) ) )
Assertion
Ref Expression
2wlkdlem6  |-  ( ph  ->  ( B  e.  ( I `  J )  /\  B  e.  ( I `  K ) ) )

Proof of Theorem 2wlkdlem6
StepHypRef Expression
1 2wlkd.e . 2  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 J )  /\  { B ,  C }  C_  ( I `  K
) ) )
2 prcom 4267 . . . . . . . . 9  |-  { A ,  B }  =  { B ,  A }
32sseq1i 3629 . . . . . . . 8  |-  ( { A ,  B }  C_  ( I `  J
)  <->  { B ,  A }  C_  ( I `  J ) )
43biimpi 206 . . . . . . 7  |-  ( { A ,  B }  C_  ( I `  J
)  ->  { B ,  A }  C_  (
I `  J )
)
54adantl 482 . . . . . 6  |-  ( (
ph  /\  { A ,  B }  C_  (
I `  J )
)  ->  { B ,  A }  C_  (
I `  J )
)
6 2wlkd.s . . . . . . . 8  |-  ( ph  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )
76simp2d 1074 . . . . . . 7  |-  ( ph  ->  B  e.  V )
86simp1d 1073 . . . . . . . 8  |-  ( ph  ->  A  e.  V )
98adantr 481 . . . . . . 7  |-  ( (
ph  /\  { A ,  B }  C_  (
I `  J )
)  ->  A  e.  V )
10 prssg 4350 . . . . . . 7  |-  ( ( B  e.  V  /\  A  e.  V )  ->  ( ( B  e.  ( I `  J
)  /\  A  e.  ( I `  J
) )  <->  { B ,  A }  C_  (
I `  J )
) )
117, 9, 10syl2an2r 876 . . . . . 6  |-  ( (
ph  /\  { A ,  B }  C_  (
I `  J )
)  ->  ( ( B  e.  ( I `  J )  /\  A  e.  ( I `  J
) )  <->  { B ,  A }  C_  (
I `  J )
) )
125, 11mpbird 247 . . . . 5  |-  ( (
ph  /\  { A ,  B }  C_  (
I `  J )
)  ->  ( B  e.  ( I `  J
)  /\  A  e.  ( I `  J
) ) )
1312simpld 475 . . . 4  |-  ( (
ph  /\  { A ,  B }  C_  (
I `  J )
)  ->  B  e.  ( I `  J
) )
1413ex 450 . . 3  |-  ( ph  ->  ( { A ,  B }  C_  ( I `
 J )  ->  B  e.  ( I `  J ) ) )
15 simpr 477 . . . . . 6  |-  ( (
ph  /\  { B ,  C }  C_  (
I `  K )
)  ->  { B ,  C }  C_  (
I `  K )
)
166simp3d 1075 . . . . . . . 8  |-  ( ph  ->  C  e.  V )
1716adantr 481 . . . . . . 7  |-  ( (
ph  /\  { B ,  C }  C_  (
I `  K )
)  ->  C  e.  V )
18 prssg 4350 . . . . . . 7  |-  ( ( B  e.  V  /\  C  e.  V )  ->  ( ( B  e.  ( I `  K
)  /\  C  e.  ( I `  K
) )  <->  { B ,  C }  C_  (
I `  K )
) )
197, 17, 18syl2an2r 876 . . . . . 6  |-  ( (
ph  /\  { B ,  C }  C_  (
I `  K )
)  ->  ( ( B  e.  ( I `  K )  /\  C  e.  ( I `  K
) )  <->  { B ,  C }  C_  (
I `  K )
) )
2015, 19mpbird 247 . . . . 5  |-  ( (
ph  /\  { B ,  C }  C_  (
I `  K )
)  ->  ( B  e.  ( I `  K
)  /\  C  e.  ( I `  K
) ) )
2120simpld 475 . . . 4  |-  ( (
ph  /\  { B ,  C }  C_  (
I `  K )
)  ->  B  e.  ( I `  K
) )
2221ex 450 . . 3  |-  ( ph  ->  ( { B ,  C }  C_  ( I `
 K )  ->  B  e.  ( I `  K ) ) )
2314, 22anim12d 586 . 2  |-  ( ph  ->  ( ( { A ,  B }  C_  (
I `  J )  /\  { B ,  C }  C_  ( I `  K ) )  -> 
( B  e.  ( I `  J )  /\  B  e.  ( I `  K ) ) ) )
241, 23mpd 15 1  |-  ( ph  ->  ( B  e.  ( I `  J )  /\  B  e.  ( I `  K ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {cpr 4179   ` cfv 5888   <"cs2 13586   <"cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-sn 4178  df-pr 4180
This theorem is referenced by:  2wlkdlem7  26828
  Copyright terms: Public domain W3C validator