| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2wlkdlem6 | Structured version Visualization version Unicode version | ||
| Description: Lemma 6 for 2wlkd 26832. (Contributed by AV, 23-Jan-2021.) |
| Ref | Expression |
|---|---|
| 2wlkd.p |
|
| 2wlkd.f |
|
| 2wlkd.s |
|
| 2wlkd.n |
|
| 2wlkd.e |
|
| Ref | Expression |
|---|---|
| 2wlkdlem6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.e |
. 2
| |
| 2 | prcom 4267 |
. . . . . . . . 9
| |
| 3 | 2 | sseq1i 3629 |
. . . . . . . 8
|
| 4 | 3 | biimpi 206 |
. . . . . . 7
|
| 5 | 4 | adantl 482 |
. . . . . 6
|
| 6 | 2wlkd.s |
. . . . . . . 8
| |
| 7 | 6 | simp2d 1074 |
. . . . . . 7
|
| 8 | 6 | simp1d 1073 |
. . . . . . . 8
|
| 9 | 8 | adantr 481 |
. . . . . . 7
|
| 10 | prssg 4350 |
. . . . . . 7
| |
| 11 | 7, 9, 10 | syl2an2r 876 |
. . . . . 6
|
| 12 | 5, 11 | mpbird 247 |
. . . . 5
|
| 13 | 12 | simpld 475 |
. . . 4
|
| 14 | 13 | ex 450 |
. . 3
|
| 15 | simpr 477 |
. . . . . 6
| |
| 16 | 6 | simp3d 1075 |
. . . . . . . 8
|
| 17 | 16 | adantr 481 |
. . . . . . 7
|
| 18 | prssg 4350 |
. . . . . . 7
| |
| 19 | 7, 17, 18 | syl2an2r 876 |
. . . . . 6
|
| 20 | 15, 19 | mpbird 247 |
. . . . 5
|
| 21 | 20 | simpld 475 |
. . . 4
|
| 22 | 21 | ex 450 |
. . 3
|
| 23 | 14, 22 | anim12d 586 |
. 2
|
| 24 | 1, 23 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: 2wlkdlem7 26828 |
| Copyright terms: Public domain | W3C validator |