MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthdlem1 Structured version   Visualization version   Unicode version

Theorem 2pthdlem1 26826
Description: Lemma 1 for 2pthd 26836. (Contributed by AV, 14-Feb-2021.)
Hypotheses
Ref Expression
2wlkd.p  |-  P  = 
<" A B C ">
2wlkd.f  |-  F  = 
<" J K ">
2wlkd.s  |-  ( ph  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )
2wlkd.n  |-  ( ph  ->  ( A  =/=  B  /\  B  =/=  C
) )
Assertion
Ref Expression
2pthdlem1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) ) )
Distinct variable groups:    k, F    P, k    k, V    j, F, k    P, j
Allowed substitution hints:    ph( j, k)    A( j, k)    B( j, k)    C( j, k)    J( j, k)    K( j, k)    V( j)

Proof of Theorem 2pthdlem1
StepHypRef Expression
1 2wlkd.n . . . 4  |-  ( ph  ->  ( A  =/=  B  /\  B  =/=  C
) )
2 2wlkd.p . . . . 5  |-  P  = 
<" A B C ">
3 2wlkd.f . . . . 5  |-  F  = 
<" J K ">
4 2wlkd.s . . . . 5  |-  ( ph  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )
52, 3, 42wlkdlem3 26823 . . . 4  |-  ( ph  ->  ( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B  /\  ( P ` 
2 )  =  C ) )
6 simpl 473 . . . . . . . . . . . 12  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  0
)  =  A )
7 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( P `  1
)  =  B )
86, 7neeq12d 2855 . . . . . . . . . . 11  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( ( P ` 
0 )  =/=  ( P `  1 )  <->  A  =/=  B ) )
98bicomd 213 . . . . . . . . . 10  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B )  -> 
( A  =/=  B  <->  ( P `  0 )  =/=  ( P ` 
1 ) ) )
1093adant3 1081 . . . . . . . . 9  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C )  ->  ( A  =/=  B  <->  ( P `  0 )  =/=  ( P `  1
) ) )
1110biimpcd 239 . . . . . . . 8  |-  ( A  =/=  B  ->  (
( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B  /\  ( P ` 
2 )  =  C )  ->  ( P `  0 )  =/=  ( P `  1
) ) )
1211adantr 481 . . . . . . 7  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B  /\  ( P `
 2 )  =  C )  ->  ( P `  0 )  =/=  ( P `  1
) ) )
1312imp 445 . . . . . 6  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( P `  0
)  =/=  ( P `
 1 ) )
1413a1d 25 . . . . 5  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( 0  =/=  1  ->  ( P `  0
)  =/=  ( P `
 1 ) ) )
15 eqid 2622 . . . . . 6  |-  1  =  1
16 eqneqall 2805 . . . . . 6  |-  ( 1  =  1  ->  (
1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) ) )
1715, 16mp1i 13 . . . . 5  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( 1  =/=  1  ->  ( P `  1
)  =/=  ( P `
 1 ) ) )
18 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( P `  1
)  =  B  /\  ( P `  2 )  =  C )  -> 
( P `  2
)  =  C )
19 simpl 473 . . . . . . . . . . . 12  |-  ( ( ( P `  1
)  =  B  /\  ( P `  2 )  =  C )  -> 
( P `  1
)  =  B )
2018, 19neeq12d 2855 . . . . . . . . . . 11  |-  ( ( ( P `  1
)  =  B  /\  ( P `  2 )  =  C )  -> 
( ( P ` 
2 )  =/=  ( P `  1 )  <->  C  =/=  B ) )
21 necom 2847 . . . . . . . . . . 11  |-  ( C  =/=  B  <->  B  =/=  C )
2220, 21syl6rbb 277 . . . . . . . . . 10  |-  ( ( ( P `  1
)  =  B  /\  ( P `  2 )  =  C )  -> 
( B  =/=  C  <->  ( P `  2 )  =/=  ( P ` 
1 ) ) )
23223adant1 1079 . . . . . . . . 9  |-  ( ( ( P `  0
)  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C )  ->  ( B  =/=  C  <->  ( P `  2 )  =/=  ( P `  1
) ) )
2423biimpcd 239 . . . . . . . 8  |-  ( B  =/=  C  ->  (
( ( P ` 
0 )  =  A  /\  ( P ` 
1 )  =  B  /\  ( P ` 
2 )  =  C )  ->  ( P `  2 )  =/=  ( P `  1
) ) )
2524adantl 482 . . . . . . 7  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( ( ( P `
 0 )  =  A  /\  ( P `
 1 )  =  B  /\  ( P `
 2 )  =  C )  ->  ( P `  2 )  =/=  ( P `  1
) ) )
2625imp 445 . . . . . 6  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( P `  2
)  =/=  ( P `
 1 ) )
2726a1d 25 . . . . 5  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( 2  =/=  1  ->  ( P `  2
)  =/=  ( P `
 1 ) ) )
2814, 17, 273jca 1242 . . . 4  |-  ( ( ( A  =/=  B  /\  B  =/=  C
)  /\  ( ( P `  0 )  =  A  /\  ( P `  1 )  =  B  /\  ( P `  2 )  =  C ) )  -> 
( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) ) ) )
291, 5, 28syl2anc 693 . . 3  |-  ( ph  ->  ( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) ) ) )
302fveq2i 6194 . . . . . . . 8  |-  ( # `  P )  =  (
# `  <" A B C "> )
31 s3len 13639 . . . . . . . 8  |-  ( # `  <" A B C "> )  =  3
3230, 31eqtri 2644 . . . . . . 7  |-  ( # `  P )  =  3
3332oveq2i 6661 . . . . . 6  |-  ( 0..^ ( # `  P
) )  =  ( 0..^ 3 )
34 fzo0to3tp 12554 . . . . . 6  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
3533, 34eqtri 2644 . . . . 5  |-  ( 0..^ ( # `  P
) )  =  {
0 ,  1 ,  2 }
3635raleqi 3142 . . . 4  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1
) )  <->  A. k  e.  { 0 ,  1 ,  2 }  (
k  =/=  1  -> 
( P `  k
)  =/=  ( P `
 1 ) ) )
37 c0ex 10034 . . . . 5  |-  0  e.  _V
38 1ex 10035 . . . . 5  |-  1  e.  _V
39 2ex 11092 . . . . 5  |-  2  e.  _V
40 neeq1 2856 . . . . . 6  |-  ( k  =  0  ->  (
k  =/=  1  <->  0  =/=  1 ) )
41 fveq2 6191 . . . . . . 7  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
4241neeq1d 2853 . . . . . 6  |-  ( k  =  0  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  0 )  =/=  ( P `  1
) ) )
4340, 42imbi12d 334 . . . . 5  |-  ( k  =  0  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 0  =/=  1  ->  ( P `  0
)  =/=  ( P `
 1 ) ) ) )
44 neeq1 2856 . . . . . 6  |-  ( k  =  1  ->  (
k  =/=  1  <->  1  =/=  1 ) )
45 fveq2 6191 . . . . . . 7  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
4645neeq1d 2853 . . . . . 6  |-  ( k  =  1  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  1 )  =/=  ( P `  1
) ) )
4744, 46imbi12d 334 . . . . 5  |-  ( k  =  1  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 1  =/=  1  ->  ( P `  1
)  =/=  ( P `
 1 ) ) ) )
48 neeq1 2856 . . . . . 6  |-  ( k  =  2  ->  (
k  =/=  1  <->  2  =/=  1 ) )
49 fveq2 6191 . . . . . . 7  |-  ( k  =  2  ->  ( P `  k )  =  ( P ` 
2 ) )
5049neeq1d 2853 . . . . . 6  |-  ( k  =  2  ->  (
( P `  k
)  =/=  ( P `
 1 )  <->  ( P `  2 )  =/=  ( P `  1
) ) )
5148, 50imbi12d 334 . . . . 5  |-  ( k  =  2  ->  (
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) )  <-> 
( 2  =/=  1  ->  ( P `  2
)  =/=  ( P `
 1 ) ) ) )
5237, 38, 39, 43, 47, 51raltp 4240 . . . 4  |-  ( A. k  e.  { 0 ,  1 ,  2 }  ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
)  <->  ( ( 0  =/=  1  ->  ( P `  0 )  =/=  ( P `  1
) )  /\  (
1  =/=  1  -> 
( P `  1
)  =/=  ( P `
 1 ) )  /\  ( 2  =/=  1  ->  ( P `  2 )  =/=  ( P `  1
) ) ) )
5336, 52bitri 264 . . 3  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1
) )  <->  ( (
0  =/=  1  -> 
( P `  0
)  =/=  ( P `
 1 ) )  /\  ( 1  =/=  1  ->  ( P `  1 )  =/=  ( P `  1
) )  /\  (
2  =/=  1  -> 
( P `  2
)  =/=  ( P `
 1 ) ) ) )
5429, 53sylibr 224 . 2  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1
) ) )
553fveq2i 6194 . . . . . . . 8  |-  ( # `  F )  =  (
# `  <" J K "> )
56 s2len 13634 . . . . . . . 8  |-  ( # `  <" J K "> )  =  2
5755, 56eqtri 2644 . . . . . . 7  |-  ( # `  F )  =  2
5857oveq2i 6661 . . . . . 6  |-  ( 1..^ ( # `  F
) )  =  ( 1..^ 2 )
59 fzo12sn 12551 . . . . . 6  |-  ( 1..^ 2 )  =  {
1 }
6058, 59eqtri 2644 . . . . 5  |-  ( 1..^ ( # `  F
) )  =  {
1 }
6160raleqi 3142 . . . 4  |-  ( A. j  e.  ( 1..^ ( # `  F
) ) ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j
) )  <->  A. j  e.  { 1 }  (
k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) ) )
62 neeq2 2857 . . . . . 6  |-  ( j  =  1  ->  (
k  =/=  j  <->  k  =/=  1 ) )
63 fveq2 6191 . . . . . . 7  |-  ( j  =  1  ->  ( P `  j )  =  ( P ` 
1 ) )
6463neeq2d 2854 . . . . . 6  |-  ( j  =  1  ->  (
( P `  k
)  =/=  ( P `
 j )  <->  ( P `  k )  =/=  ( P `  1 )
) )
6562, 64imbi12d 334 . . . . 5  |-  ( j  =  1  ->  (
( k  =/=  j  ->  ( P `  k
)  =/=  ( P `
 j ) )  <-> 
( k  =/=  1  ->  ( P `  k
)  =/=  ( P `
 1 ) ) ) )
6638, 65ralsn 4222 . . . 4  |-  ( A. j  e.  { 1 }  ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j )
)  <->  ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1 )
) )
6761, 66bitri 264 . . 3  |-  ( A. j  e.  ( 1..^ ( # `  F
) ) ( k  =/=  j  ->  ( P `  k )  =/=  ( P `  j
) )  <->  ( k  =/=  1  ->  ( P `
 k )  =/=  ( P `  1
) ) )
6867ralbii 2980 . 2  |-  ( A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) )  <->  A. k  e.  (
0..^ ( # `  P
) ) ( k  =/=  1  ->  ( P `  k )  =/=  ( P `  1
) ) )
6954, 68sylibr 224 1  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  P
) ) A. j  e.  ( 1..^ ( # `  F ) ) ( k  =/=  j  -> 
( P `  k
)  =/=  ( P `
 j ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {csn 4177   {ctp 4181   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937   2c2 11070   3c3 11071  ..^cfzo 12465   #chash 13117   <"cs2 13586   <"cs3 13587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594
This theorem is referenced by:  2pthd  26836
  Copyright terms: Public domain W3C validator