MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ioran Structured version   Visualization version   Unicode version

Theorem 3ioran 1056
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
3ioran  |-  ( -.  ( ph  \/  ps  \/  ch )  <->  ( -.  ph 
/\  -.  ps  /\  -.  ch ) )

Proof of Theorem 3ioran
StepHypRef Expression
1 ioran 511 . . 3  |-  ( -.  ( ph  \/  ps ) 
<->  ( -.  ph  /\  -.  ps ) )
21anbi1i 731 . 2  |-  ( ( -.  ( ph  \/  ps )  /\  -.  ch ) 
<->  ( ( -.  ph  /\ 
-.  ps )  /\  -.  ch ) )
3 ioran 511 . . 3  |-  ( -.  ( ( ph  \/  ps )  \/  ch ) 
<->  ( -.  ( ph  \/  ps )  /\  -.  ch ) )
4 df-3or 1038 . . 3  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
53, 4xchnxbir 323 . 2  |-  ( -.  ( ph  \/  ps  \/  ch )  <->  ( -.  ( ph  \/  ps )  /\  -.  ch ) )
6 df-3an 1039 . 2  |-  ( ( -.  ph  /\  -.  ps  /\ 
-.  ch )  <->  ( ( -.  ph  /\  -.  ps )  /\  -.  ch )
)
72, 5, 63bitr4i 292 1  |-  ( -.  ( ph  \/  ps  \/  ch )  <->  ( -.  ph 
/\  -.  ps  /\  -.  ch ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039
This theorem is referenced by:  3oran  1057  cadnot  1554  lcmftp  15349  prm23ge5  15520  cnfldfunALT  19759  fbunfip  21673  frgrregord013  27253  wl-nfeqfb  33323
  Copyright terms: Public domain W3C validator