MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldfunALT Structured version   Visualization version   Unicode version

Theorem cnfldfunALT 19759
Description: Alternate proof of cnfldfun 19758 (much shorter proof, using cnfldstr 19748 and structn0fun 15869: in addition, it must be shown that  (/)  e/fld). (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnfldfunALT  |-  Funfld

Proof of Theorem cnfldfunALT
StepHypRef Expression
1 cnfldstr 19748 . 2  |-fld Struct 
<. 1 , ; 1 3 >.
2 structn0fun 15869 . . 3  |-  (fld Struct  <. 1 , ; 1
3 >.  ->  Fun  (fld  \  { (/)
} ) )
3 fvex 6201 . . . . . . . . . . . . 13  |-  ( Base `  ndx )  e.  _V
4 cnex 10017 . . . . . . . . . . . . 13  |-  CC  e.  _V
53, 4opnzi 4943 . . . . . . . . . . . 12  |-  <. ( Base `  ndx ) ,  CC >.  =/=  (/)
65nesymi 2851 . . . . . . . . . . 11  |-  -.  (/)  =  <. (
Base `  ndx ) ,  CC >.
7 fvex 6201 . . . . . . . . . . . . 13  |-  ( +g  ` 
ndx )  e.  _V
8 addex 11830 . . . . . . . . . . . . 13  |-  +  e.  _V
97, 8opnzi 4943 . . . . . . . . . . . 12  |-  <. ( +g  `  ndx ) ,  +  >.  =/=  (/)
109nesymi 2851 . . . . . . . . . . 11  |-  -.  (/)  =  <. ( +g  `  ndx ) ,  +  >.
11 fvex 6201 . . . . . . . . . . . . 13  |-  ( .r
`  ndx )  e.  _V
12 mulex 11831 . . . . . . . . . . . . 13  |-  x.  e.  _V
1311, 12opnzi 4943 . . . . . . . . . . . 12  |-  <. ( .r `  ndx ) ,  x.  >.  =/=  (/)
1413nesymi 2851 . . . . . . . . . . 11  |-  -.  (/)  =  <. ( .r `  ndx ) ,  x.  >.
15 3ioran 1056 . . . . . . . . . . . 12  |-  ( -.  ( (/)  =  <. (
Base `  ndx ) ,  CC >.  \/  (/)  =  <. ( +g  `  ndx ) ,  +  >.  \/  (/)  =  <. ( .r `  ndx ) ,  x.  >. )  <->  ( -.  (/)  =  <. ( Base `  ndx ) ,  CC >.  /\  -.  (/)  =  <. ( +g  `  ndx ) ,  +  >.  /\  -.  (/)  =  <. ( .r `  ndx ) ,  x.  >. ) )
16 0ex 4790 . . . . . . . . . . . . 13  |-  (/)  e.  _V
1716eltp 4230 . . . . . . . . . . . 12  |-  ( (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  <->  ( (/)  =  <. (
Base `  ndx ) ,  CC >.  \/  (/)  =  <. ( +g  `  ndx ) ,  +  >.  \/  (/)  =  <. ( .r `  ndx ) ,  x.  >. ) )
1815, 17xchnxbir 323 . . . . . . . . . . 11  |-  ( -.  (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  <->  ( -.  (/)  =  <. ( Base `  ndx ) ,  CC >.  /\  -.  (/)  =  <. ( +g  `  ndx ) ,  +  >.  /\  -.  (/)  =  <. ( .r `  ndx ) ,  x.  >. ) )
196, 10, 14, 18mpbir3an 1244 . . . . . . . . . 10  |-  -.  (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
20 fvex 6201 . . . . . . . . . . . . 13  |-  ( *r `  ndx )  e.  _V
21 cjf 13844 . . . . . . . . . . . . . 14  |-  * : CC --> CC
22 fex 6490 . . . . . . . . . . . . . 14  |-  ( ( * : CC --> CC  /\  CC  e.  _V )  ->  *  e.  _V )
2321, 4, 22mp2an 708 . . . . . . . . . . . . 13  |-  *  e. 
_V
2420, 23opnzi 4943 . . . . . . . . . . . 12  |-  <. (
*r `  ndx ) ,  * >.  =/=  (/)
2524necomi 2848 . . . . . . . . . . 11  |-  (/)  =/=  <. ( *r `  ndx ) ,  * >.
26 nelsn 4212 . . . . . . . . . . 11  |-  ( (/)  =/=  <. ( *r `  ndx ) ,  * >.  ->  -.  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )
2725, 26ax-mp 5 . . . . . . . . . 10  |-  -.  (/)  e.  { <. ( *r `  ndx ) ,  * >. }
2819, 27pm3.2i 471 . . . . . . . . 9  |-  ( -.  (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  -.  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )
29 fvex 6201 . . . . . . . . . . . . . 14  |-  (TopSet `  ndx )  e.  _V
30 fvex 6201 . . . . . . . . . . . . . 14  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  _V
3129, 30opnzi 4943 . . . . . . . . . . . . 13  |-  <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.  =/=  (/)
3231nesymi 2851 . . . . . . . . . . . 12  |-  -.  (/)  =  <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.
33 fvex 6201 . . . . . . . . . . . . . 14  |-  ( le
`  ndx )  e.  _V
34 letsr 17227 . . . . . . . . . . . . . . 15  |-  <_  e.  TosetRel
3534elexi 3213 . . . . . . . . . . . . . 14  |-  <_  e.  _V
3633, 35opnzi 4943 . . . . . . . . . . . . 13  |-  <. ( le `  ndx ) ,  <_  >.  =/=  (/)
3736nesymi 2851 . . . . . . . . . . . 12  |-  -.  (/)  =  <. ( le `  ndx ) ,  <_  >.
38 fvex 6201 . . . . . . . . . . . . . 14  |-  ( dist `  ndx )  e.  _V
39 absf 14077 . . . . . . . . . . . . . . . 16  |-  abs : CC
--> RR
40 fex 6490 . . . . . . . . . . . . . . . 16  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
4139, 4, 40mp2an 708 . . . . . . . . . . . . . . 15  |-  abs  e.  _V
42 subf 10283 . . . . . . . . . . . . . . . 16  |-  -  :
( CC  X.  CC )
--> CC
434, 4xpex 6962 . . . . . . . . . . . . . . . 16  |-  ( CC 
X.  CC )  e. 
_V
44 fex 6490 . . . . . . . . . . . . . . . 16  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  ( CC  X.  CC )  e.  _V )  ->  -  e.  _V )
4542, 43, 44mp2an 708 . . . . . . . . . . . . . . 15  |-  -  e.  _V
4641, 45coex 7118 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  _V
4738, 46opnzi 4943 . . . . . . . . . . . . 13  |-  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >.  =/=  (/)
4847nesymi 2851 . . . . . . . . . . . 12  |-  -.  (/)  =  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >.
49 3ioran 1056 . . . . . . . . . . . 12  |-  ( -.  ( (/)  =  <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.  \/  (/)  =  <. ( le `  ndx ) ,  <_  >.  \/  (/)  =  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. )  <->  ( -.  (/)  =  <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >.  /\  -.  (/)  =  <. ( le `  ndx ) ,  <_  >.  /\  -.  (/)  =  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. ) )
5032, 37, 48, 49mpbir3an 1244 . . . . . . . . . . 11  |-  -.  ( (/)  =  <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >.  \/  (/)  =  <. ( le `  ndx ) ,  <_  >.  \/  (/)  =  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. )
5116eltp 4230 . . . . . . . . . . 11  |-  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  <->  ( (/)  =  <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >.  \/  (/)  =  <. ( le `  ndx ) ,  <_  >.  \/  (/)  =  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. ) )
5250, 51mtbir 313 . . . . . . . . . 10  |-  -.  (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
53 fvex 6201 . . . . . . . . . . . . 13  |-  ( UnifSet ` 
ndx )  e.  _V
54 fvex 6201 . . . . . . . . . . . . 13  |-  (metUnif `  ( abs  o.  -  ) )  e.  _V
5553, 54opnzi 4943 . . . . . . . . . . . 12  |-  <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >.  =/=  (/)
5655necomi 2848 . . . . . . . . . . 11  |-  (/)  =/=  <. (
UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >.
57 nelsn 4212 . . . . . . . . . . 11  |-  ( (/)  =/=  <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o.  -  ) )
>.  ->  -.  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
5856, 57ax-mp 5 . . . . . . . . . 10  |-  -.  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. }
5952, 58pm3.2i 471 . . . . . . . . 9  |-  ( -.  (/)  e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  -.  (/) 
e.  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } )
6028, 59pm3.2i 471 . . . . . . . 8  |-  ( ( -.  (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  -.  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  /\  ( -.  (/)  e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  -.  (/) 
e.  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } ) )
61 ioran 511 . . . . . . . . 9  |-  ( -.  ( ( (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  \/  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  <->  ( -.  ( (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )  /\  -.  ( (/) 
e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
62 ioran 511 . . . . . . . . . 10  |-  ( -.  ( (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )  <->  ( -.  (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  -.  (/)  e.  { <. ( *r `  ndx ) ,  * >. } ) )
63 ioran 511 . . . . . . . . . 10  |-  ( -.  ( (/)  e.  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  <->  ( -.  (/) 
e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  -.  (/) 
e.  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } ) )
6462, 63anbi12i 733 . . . . . . . . 9  |-  ( ( -.  ( (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  /\  -.  ( (/) 
e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  <->  ( ( -.  (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  -.  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  /\  ( -.  (/)  e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  -.  (/) 
e.  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } ) ) )
6561, 64bitri 264 . . . . . . . 8  |-  ( -.  ( ( (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  \/  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  <->  ( ( -.  (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  /\  -.  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } )  /\  ( -.  (/)  e.  { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  /\  -.  (/) 
e.  { <. ( UnifSet
`  ndx ) ,  (metUnif `  ( abs  o.  -  ) ) >. } ) ) )
6660, 65mpbir 221 . . . . . . 7  |-  -.  (
( (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )  \/  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
67 df-cnfld 19747 . . . . . . . . 9  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
6867eleq2i 2693 . . . . . . . 8  |-  ( (/)  e.fld  <->  (/)  e.  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
69 elun 3753 . . . . . . . 8  |-  ( (/)  e.  ( ( { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  <->  ( (/)  e.  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  \/  (/)  e.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
70 elun 3753 . . . . . . . . 9  |-  ( (/)  e.  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  <->  ( (/)  e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/) 
e.  { <. (
*r `  ndx ) ,  * >. } ) )
71 elun 3753 . . . . . . . . 9  |-  ( (/)  e.  ( { <. (TopSet ` 
ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  <->  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
7270, 71orbi12i 543 . . . . . . . 8  |-  ( (
(/)  e.  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  \/  (/)  e.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )  <->  ( ( (/) 
e.  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )  \/  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
7368, 69, 723bitri 286 . . . . . . 7  |-  ( (/)  e.fld  <->  (
( (/)  e.  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  \/  (/)  e.  { <. ( *r `  ndx ) ,  * >. } )  \/  ( (/)  e.  { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  \/  (/)  e.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) ) )
7466, 73mtbir 313 . . . . . 6  |-  -.  (/)  e.fld
75 disjsn 4246 . . . . . 6  |-  ( (fld  i^i 
{ (/) } )  =  (/) 
<->  -.  (/)  e.fld )
7674, 75mpbir 221 . . . . 5  |-  (fld  i^i  { (/)
} )  =  (/)
77 disjdif2 4047 . . . . 5  |-  ( (fld  i^i 
{ (/) } )  =  (/)  ->  (fld 
\  { (/) } )  =fld )
7876, 77ax-mp 5 . . . 4  |-  (fld  \  { (/)
} )  =fld
7978funeqi 5909 . . 3  |-  ( Fun  (fld 
\  { (/) } )  <->  Funfld )
802, 79sylib 208 . 2  |-  (fld Struct  <. 1 , ; 1
3 >.  ->  Funfld )
811, 80ax-mp 5 1  |-  Funfld
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {ctp 4181   <.cop 4183   class class class wbr 4653    X. cxp 5112    o. ccom 5118   Fun wfun 5882   -->wf 5884   ` cfv 5888   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   3c3 11071  ;cdc 11493   *ccj 13836   abscabs 13974   Struct cstr 15853   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   .rcmulr 15942   *rcstv 15943  TopSetcts 15947   lecple 15948   distcds 15950   UnifSetcunif 15951    TosetRel ctsr 17199   MetOpencmopn 19736  metUnifcmetu 19737  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-ps 17200  df-tsr 17201  df-cnfld 19747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator