Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atex2-0cOLDN Structured version   Visualization version   Unicode version

Theorem 4atex2-0cOLDN 35366
Description: Same as 4atex2 35363 except that  S and 
T are zero. TODO: do we need this one or 4atex2-0aOLDN 35364 or 4atex2-0bOLDN 35365? (Contributed by NM, 27-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
4that.l  |-  .<_  =  ( le `  K )
4that.j  |-  .\/  =  ( join `  K )
4that.a  |-  A  =  ( Atoms `  K )
4that.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
4atex2-0cOLDN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
Distinct variable groups:    z, r, A    H, r    .\/ , r,
z    K, r, z    .<_ , r, z    P, r, z    Q, r, z    S, r, z    W, r, z    T, r, z    z, H

Proof of Theorem 4atex2-0cOLDN
StepHypRef Expression
1 simp21l 1178 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  P  e.  A )
2 simp21r 1179 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  -.  P  .<_  W )
3 simp23 1096 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  S  =  ( 0. `  K ) )
43oveq1d 6665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( S  .\/  P )  =  ( ( 0. `  K
)  .\/  P )
)
5 simp32 1098 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  T  =  ( 0. `  K ) )
65oveq1d 6665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( T  .\/  P )  =  ( ( 0. `  K
)  .\/  P )
)
74, 6eqtr4d 2659 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  ( S  .\/  P )  =  ( T  .\/  P ) )
8 breq1 4656 . . . . 5  |-  ( z  =  P  ->  (
z  .<_  W  <->  P  .<_  W ) )
98notbid 308 . . . 4  |-  ( z  =  P  ->  ( -.  z  .<_  W  <->  -.  P  .<_  W ) )
10 oveq2 6658 . . . . 5  |-  ( z  =  P  ->  ( S  .\/  z )  =  ( S  .\/  P
) )
11 oveq2 6658 . . . . 5  |-  ( z  =  P  ->  ( T  .\/  z )  =  ( T  .\/  P
) )
1210, 11eqeq12d 2637 . . . 4  |-  ( z  =  P  ->  (
( S  .\/  z
)  =  ( T 
.\/  z )  <->  ( S  .\/  P )  =  ( T  .\/  P ) ) )
139, 12anbi12d 747 . . 3  |-  ( z  =  P  ->  (
( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z ) )  <->  ( -.  P  .<_  W  /\  ( S 
.\/  P )  =  ( T  .\/  P
) ) ) )
1413rspcev 3309 . 2  |-  ( ( P  e.  A  /\  ( -.  P  .<_  W  /\  ( S  .\/  P )  =  ( T 
.\/  P ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
151, 2, 7, 14syl12anc 1324 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  =  ( 0. `  K ) )  /\  ( P  =/=  Q  /\  T  =  ( 0. `  K )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( S  .\/  z )  =  ( T  .\/  z
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   lecple 15948   joincjn 16944   0.cp0 17037   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator