| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exists2 | Structured version Visualization version Unicode version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| exists2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2480 |
. . . . . 6
| |
| 2 | nfa1 2028 |
. . . . . 6
| |
| 3 | exists1 2561 |
. . . . . . 7
| |
| 4 | axc16 2135 |
. . . . . . 7
| |
| 5 | 3, 4 | sylbi 207 |
. . . . . 6
|
| 6 | 1, 2, 5 | exlimd 2087 |
. . . . 5
|
| 7 | 6 | com12 32 |
. . . 4
|
| 8 | alex 1753 |
. . . 4
| |
| 9 | 7, 8 | syl6ib 241 |
. . 3
|
| 10 | 9 | con2d 129 |
. 2
|
| 11 | 10 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |