Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovprc Structured version   Visualization version   Unicode version

Theorem aovprc 41268
Description: The value of an operation when the one of the arguments is a proper class, analogous to ovprc 6683. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovprc.1  |-  Rel  dom  F
Assertion
Ref Expression
aovprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> (( A F B))  =  _V )

Proof of Theorem aovprc
StepHypRef Expression
1 df-aov 41198 . 2  |- (( A F B))  =  ( F''' <. A ,  B >. )
2 df-br 4654 . . . . 5  |-  ( A dom  F  B  <->  <. A ,  B >.  e.  dom  F
)
3 aovprc.1 . . . . . 6  |-  Rel  dom  F
4 brrelex12 5155 . . . . . 6  |-  ( ( Rel  dom  F  /\  A dom  F  B )  ->  ( A  e. 
_V  /\  B  e.  _V ) )
53, 4mpan 706 . . . . 5  |-  ( A dom  F  B  -> 
( A  e.  _V  /\  B  e.  _V )
)
62, 5sylbir 225 . . . 4  |-  ( <. A ,  B >.  e. 
dom  F  ->  ( A  e.  _V  /\  B  e.  _V ) )
76con3i 150 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  -.  <. A ,  B >.  e.  dom  F )
8 ndmafv 41220 . . 3  |-  ( -. 
<. A ,  B >.  e. 
dom  F  ->  ( F''' <. A ,  B >. )  =  _V )
97, 8syl 17 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( F''' <. A ,  B >. )  =  _V )
101, 9syl5eq 2668 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> (( A F B))  =  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183   class class class wbr 4653   dom cdm 5114   Rel wrel 5119  '''cafv 41194   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator