Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovvdm Structured version   Visualization version   Unicode version

Theorem aovvdm 41265
Description: If the operation value of a class for an ordered pair is a set, the ordered pair is contained in the domain of the class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovvdm  |-  ( (( A F B))  e.  C  -> 
<. A ,  B >.  e. 
dom  F )

Proof of Theorem aovvdm
StepHypRef Expression
1 df-aov 41198 . . 3  |- (( A F B))  =  ( F''' <. A ,  B >. )
21eleq1i 2692 . 2  |-  ( (( A F B))  e.  C  <->  ( F''' <. A ,  B >. )  e.  C )
3 afvvdm 41221 . 2  |-  ( ( F''' <. A ,  B >. )  e.  C  ->  <. A ,  B >.  e. 
dom  F )
42, 3sylbi 207 1  |-  ( (( A F B))  e.  C  -> 
<. A ,  B >.  e. 
dom  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   <.cop 4183   dom cdm 5114  '''cafv 41194   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-un 3579  df-if 4087  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by:  ndmaovrcl  41284  ndmaovass  41286  ndmaovdistr  41287
  Copyright terms: Public domain W3C validator