Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovass Structured version   Visualization version   Unicode version

Theorem ndmaovass 41286
Description: Any operation is associative outside its domain. In contrast to ndmovass 6822 where it is required that the operation's domain doesn't contain the empty set ( -.  (/)  e.  S), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1  |-  dom  F  =  ( S  X.  S )
Assertion
Ref Expression
ndmaovass  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  = (( A F (( B F C)) ))  )

Proof of Theorem ndmaovass
StepHypRef Expression
1 ndmaov.1 . . . . . . 7  |-  dom  F  =  ( S  X.  S )
21eleq2i 2693 . . . . . 6  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  <->  <. (( A F B))  ,  C >.  e.  ( S  X.  S
) )
3 opelxp 5146 . . . . . 6  |-  ( <. (( A F B))  ,  C >.  e.  ( S  X.  S )  <->  ( (( A F B))  e.  S  /\  C  e.  S
) )
42, 3bitri 264 . . . . 5  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  <->  ( (( A F B))  e.  S  /\  C  e.  S
) )
5 aovvdm 41265 . . . . . . 7  |-  ( (( A F B))  e.  S  -> 
<. A ,  B >.  e. 
dom  F )
61eleq2i 2693 . . . . . . . . 9  |-  ( <. A ,  B >.  e. 
dom  F  <->  <. A ,  B >.  e.  ( S  X.  S ) )
7 opelxp 5146 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  B  e.  S ) )
86, 7bitri 264 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  F  <->  ( A  e.  S  /\  B  e.  S ) )
9 df-3an 1039 . . . . . . . . 9  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S ) )
109simplbi2 655 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
118, 10sylbi 207 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  F  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
125, 11syl 17 . . . . . 6  |-  ( (( A F B))  e.  S  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
1312imp 445 . . . . 5  |-  ( ( (( A F B))  e.  S  /\  C  e.  S
)  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
144, 13sylbi 207 . . . 4  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
1514con3i 150 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. (( A F B))  ,  C >.  e. 
dom  F )
16 ndmaov 41263 . . 3  |-  ( -. 
<. (( A F B))  ,  C >.  e.  dom  F  -> (( (( A F B))  F C))  =  _V )
1715, 16syl 17 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  =  _V )
181eleq2i 2693 . . . . . . 7  |-  ( <. A , (( B F C))  >.  e.  dom  F  <->  <. A , (( B F C))  >.  e.  ( S  X.  S ) )
19 opelxp 5146 . . . . . . 7  |-  ( <. A , (( B F C))  >.  e.  ( S  X.  S )  <->  ( A  e.  S  /\ (( B F C))  e.  S ) )
2018, 19bitri 264 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  dom  F  <->  ( A  e.  S  /\ (( B F C))  e.  S
) )
21 aovvdm 41265 . . . . . . . 8  |-  ( (( B F C))  e.  S  -> 
<. B ,  C >.  e. 
dom  F )
221eleq2i 2693 . . . . . . . . . 10  |-  ( <. B ,  C >.  e. 
dom  F  <->  <. B ,  C >.  e.  ( S  X.  S ) )
23 opelxp 5146 . . . . . . . . . 10  |-  ( <. B ,  C >.  e.  ( S  X.  S
)  <->  ( B  e.  S  /\  C  e.  S ) )
2422, 23bitri 264 . . . . . . . . 9  |-  ( <. B ,  C >.  e. 
dom  F  <->  ( B  e.  S  /\  C  e.  S ) )
25 3anass 1042 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
2625biimpri 218 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
)
2726a1d 25 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
2827expcom 451 . . . . . . . . 9  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) ) )
2924, 28sylbi 207 . . . . . . . 8  |-  ( <. B ,  C >.  e. 
dom  F  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) ) )
3021, 29syl 17 . . . . . . 7  |-  ( (( B F C))  e.  S  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) ) )
3130impcom 446 . . . . . 6  |-  ( ( A  e.  S  /\ (( B F C))  e.  S
)  ->  ( <. A , (( B F C)) 
>.  e.  dom  F  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
3220, 31sylbi 207 . . . . 5  |-  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) )
3332pm2.43i 52 . . . 4  |-  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
3433con3i 150 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. A , (( B F C))  >.  e.  dom  F )
35 ndmaov 41263 . . 3  |-  ( -. 
<. A , (( B F C))  >.  e.  dom  F  -> (( A F (( B F C)) ))  =  _V )
3634, 35syl 17 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A F (( B F C)) ))  =  _V )
3717, 36eqtr4d 2659 1  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  = (( A F (( B F C)) ))  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   dom cdm 5114   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator