| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovass | Structured version Visualization version Unicode version | ||
| Description: Any operation is
associative outside its domain. In contrast to
ndmovass 6822 where it is required that the operation's
domain doesn't
contain the empty set ( |
| Ref | Expression |
|---|---|
| ndmaov.1 |
|
| Ref | Expression |
|---|---|
| ndmaovass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmaov.1 |
. . . . . . 7
| |
| 2 | 1 | eleq2i 2693 |
. . . . . 6
|
| 3 | opelxp 5146 |
. . . . . 6
| |
| 4 | 2, 3 | bitri 264 |
. . . . 5
|
| 5 | aovvdm 41265 |
. . . . . . 7
| |
| 6 | 1 | eleq2i 2693 |
. . . . . . . . 9
|
| 7 | opelxp 5146 |
. . . . . . . . 9
| |
| 8 | 6, 7 | bitri 264 |
. . . . . . . 8
|
| 9 | df-3an 1039 |
. . . . . . . . 9
| |
| 10 | 9 | simplbi2 655 |
. . . . . . . 8
|
| 11 | 8, 10 | sylbi 207 |
. . . . . . 7
|
| 12 | 5, 11 | syl 17 |
. . . . . 6
|
| 13 | 12 | imp 445 |
. . . . 5
|
| 14 | 4, 13 | sylbi 207 |
. . . 4
|
| 15 | 14 | con3i 150 |
. . 3
|
| 16 | ndmaov 41263 |
. . 3
| |
| 17 | 15, 16 | syl 17 |
. 2
|
| 18 | 1 | eleq2i 2693 |
. . . . . . 7
|
| 19 | opelxp 5146 |
. . . . . . 7
| |
| 20 | 18, 19 | bitri 264 |
. . . . . 6
|
| 21 | aovvdm 41265 |
. . . . . . . 8
| |
| 22 | 1 | eleq2i 2693 |
. . . . . . . . . 10
|
| 23 | opelxp 5146 |
. . . . . . . . . 10
| |
| 24 | 22, 23 | bitri 264 |
. . . . . . . . 9
|
| 25 | 3anass 1042 |
. . . . . . . . . . . 12
| |
| 26 | 25 | biimpri 218 |
. . . . . . . . . . 11
|
| 27 | 26 | a1d 25 |
. . . . . . . . . 10
|
| 28 | 27 | expcom 451 |
. . . . . . . . 9
|
| 29 | 24, 28 | sylbi 207 |
. . . . . . . 8
|
| 30 | 21, 29 | syl 17 |
. . . . . . 7
|
| 31 | 30 | impcom 446 |
. . . . . 6
|
| 32 | 20, 31 | sylbi 207 |
. . . . 5
|
| 33 | 32 | pm2.43i 52 |
. . . 4
|
| 34 | 33 | con3i 150 |
. . 3
|
| 35 | ndmaov 41263 |
. . 3
| |
| 36 | 34, 35 | syl 17 |
. 2
|
| 37 | 17, 36 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-fv 5896 df-dfat 41196 df-afv 41197 df-aov 41198 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |