Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovdistr Structured version   Visualization version   Unicode version

Theorem ndmaovdistr 41287
Description: Any operation is distributive outside its domain. In contrast to ndmovdistr 6823 where it is required that the operation's domain doesn't contain the empty set (
-.  (/)  e.  S), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1  |-  dom  F  =  ( S  X.  S )
ndmaov.6  |-  dom  G  =  ( S  X.  S )
Assertion
Ref Expression
ndmaovdistr  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  = (( (( A G B))  F (( A G C)) ))  )

Proof of Theorem ndmaovdistr
StepHypRef Expression
1 ndmaov.6 . . . . . . 7  |-  dom  G  =  ( S  X.  S )
21eleq2i 2693 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  dom  G  <->  <. A , (( B F C))  >.  e.  ( S  X.  S ) )
3 opelxp 5146 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  ( S  X.  S )  <->  ( A  e.  S  /\ (( B F C))  e.  S ) )
42, 3bitri 264 . . . . 5  |-  ( <. A , (( B F C))  >.  e.  dom  G  <->  ( A  e.  S  /\ (( B F C))  e.  S
) )
5 aovvdm 41265 . . . . . . 7  |-  ( (( B F C))  e.  S  -> 
<. B ,  C >.  e. 
dom  F )
6 ndmaov.1 . . . . . . . . . 10  |-  dom  F  =  ( S  X.  S )
76eleq2i 2693 . . . . . . . . 9  |-  ( <. B ,  C >.  e. 
dom  F  <->  <. B ,  C >.  e.  ( S  X.  S ) )
8 opelxp 5146 . . . . . . . . 9  |-  ( <. B ,  C >.  e.  ( S  X.  S
)  <->  ( B  e.  S  /\  C  e.  S ) )
97, 8bitri 264 . . . . . . . 8  |-  ( <. B ,  C >.  e. 
dom  F  <->  ( B  e.  S  /\  C  e.  S ) )
10 3anass 1042 . . . . . . . . 9  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
1110simplbi2com 657 . . . . . . . 8  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
129, 11sylbi 207 . . . . . . 7  |-  ( <. B ,  C >.  e. 
dom  F  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
135, 12syl 17 . . . . . 6  |-  ( (( B F C))  e.  S  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
1413impcom 446 . . . . 5  |-  ( ( A  e.  S  /\ (( B F C))  e.  S
)  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
154, 14sylbi 207 . . . 4  |-  ( <. A , (( B F C))  >.  e.  dom  G  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
1615con3i 150 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. A , (( B F C))  >.  e.  dom  G )
17 ndmaov 41263 . . 3  |-  ( -. 
<. A , (( B F C))  >.  e.  dom  G  -> (( A G (( B F C)) ))  =  _V )
1816, 17syl 17 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  =  _V )
196eleq2i 2693 . . . . . 6  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  <->  <. (( A G B))  , (( A G C))  >.  e.  ( S  X.  S ) )
20 opelxp 5146 . . . . . 6  |-  ( <. (( A G B))  , (( A G C))  >.  e.  ( S  X.  S )  <-> 
( (( A G B))  e.  S  /\ (( A G C))  e.  S
) )
2119, 20bitri 264 . . . . 5  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  <-> 
( (( A G B))  e.  S  /\ (( A G C))  e.  S
) )
22 aovvdm 41265 . . . . . . 7  |-  ( (( A G B))  e.  S  -> 
<. A ,  B >.  e. 
dom  G )
231eleq2i 2693 . . . . . . . . 9  |-  ( <. A ,  B >.  e. 
dom  G  <->  <. A ,  B >.  e.  ( S  X.  S ) )
24 opelxp 5146 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  B  e.  S ) )
2523, 24bitri 264 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  G  <->  ( A  e.  S  /\  B  e.  S ) )
261eleq2i 2693 . . . . . . . . . . 11  |-  ( <. A ,  C >.  e. 
dom  G  <->  <. A ,  C >.  e.  ( S  X.  S ) )
27 opelxp 5146 . . . . . . . . . . 11  |-  ( <. A ,  C >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  C  e.  S ) )
2826, 27bitri 264 . . . . . . . . . 10  |-  ( <. A ,  C >.  e. 
dom  G  <->  ( A  e.  S  /\  C  e.  S ) )
29 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  A  e.  S )
30 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  B  e.  S )
31 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  C  e.  S )
3229, 30, 313jca 1242 . . . . . . . . . . 11  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
3332ex 450 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  C  e.  S )  ->  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3428, 33sylbi 207 . . . . . . . . 9  |-  ( <. A ,  C >.  e. 
dom  G  ->  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
35 aovvdm 41265 . . . . . . . . 9  |-  ( (( A G C))  e.  S  -> 
<. A ,  C >.  e. 
dom  G )
3634, 35syl11 33 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3725, 36sylbi 207 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  G  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
3822, 37syl 17 . . . . . 6  |-  ( (( A G B))  e.  S  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3938imp 445 . . . . 5  |-  ( ( (( A G B))  e.  S  /\ (( A G C))  e.  S )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
4021, 39sylbi 207 . . . 4  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
4140con3i 150 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. (( A G B))  , (( A G C))  >.  e.  dom  F
)
42 ndmaov 41263 . . 3  |-  ( -. 
<. (( A G B))  , (( A G C))  >.  e.  dom  F  -> (( (( A G B))  F (( A G C)) ))  =  _V )
4341, 42syl 17 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A G B))  F (( A G C)) )) 
=  _V )
4418, 43eqtr4d 2659 1  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  = (( (( A G B))  F (( A G C)) ))  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    X. cxp 5112   dom cdm 5114   ((caov 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-fv 5896  df-dfat 41196  df-afv 41197  df-aov 41198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator