| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ndmaovdistr | Structured version Visualization version Unicode version | ||
| Description: Any operation is
distributive outside its domain. In contrast to
ndmovdistr 6823 where it is required that the operation's
domain doesn't
contain the empty set ( |
| Ref | Expression |
|---|---|
| ndmaov.1 |
|
| ndmaov.6 |
|
| Ref | Expression |
|---|---|
| ndmaovdistr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmaov.6 |
. . . . . . 7
| |
| 2 | 1 | eleq2i 2693 |
. . . . . 6
|
| 3 | opelxp 5146 |
. . . . . 6
| |
| 4 | 2, 3 | bitri 264 |
. . . . 5
|
| 5 | aovvdm 41265 |
. . . . . . 7
| |
| 6 | ndmaov.1 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq2i 2693 |
. . . . . . . . 9
|
| 8 | opelxp 5146 |
. . . . . . . . 9
| |
| 9 | 7, 8 | bitri 264 |
. . . . . . . 8
|
| 10 | 3anass 1042 |
. . . . . . . . 9
| |
| 11 | 10 | simplbi2com 657 |
. . . . . . . 8
|
| 12 | 9, 11 | sylbi 207 |
. . . . . . 7
|
| 13 | 5, 12 | syl 17 |
. . . . . 6
|
| 14 | 13 | impcom 446 |
. . . . 5
|
| 15 | 4, 14 | sylbi 207 |
. . . 4
|
| 16 | 15 | con3i 150 |
. . 3
|
| 17 | ndmaov 41263 |
. . 3
| |
| 18 | 16, 17 | syl 17 |
. 2
|
| 19 | 6 | eleq2i 2693 |
. . . . . 6
|
| 20 | opelxp 5146 |
. . . . . 6
| |
| 21 | 19, 20 | bitri 264 |
. . . . 5
|
| 22 | aovvdm 41265 |
. . . . . . 7
| |
| 23 | 1 | eleq2i 2693 |
. . . . . . . . 9
|
| 24 | opelxp 5146 |
. . . . . . . . 9
| |
| 25 | 23, 24 | bitri 264 |
. . . . . . . 8
|
| 26 | 1 | eleq2i 2693 |
. . . . . . . . . . 11
|
| 27 | opelxp 5146 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | bitri 264 |
. . . . . . . . . 10
|
| 29 | simpll 790 |
. . . . . . . . . . . 12
| |
| 30 | simprr 796 |
. . . . . . . . . . . 12
| |
| 31 | simplr 792 |
. . . . . . . . . . . 12
| |
| 32 | 29, 30, 31 | 3jca 1242 |
. . . . . . . . . . 11
|
| 33 | 32 | ex 450 |
. . . . . . . . . 10
|
| 34 | 28, 33 | sylbi 207 |
. . . . . . . . 9
|
| 35 | aovvdm 41265 |
. . . . . . . . 9
| |
| 36 | 34, 35 | syl11 33 |
. . . . . . . 8
|
| 37 | 25, 36 | sylbi 207 |
. . . . . . 7
|
| 38 | 22, 37 | syl 17 |
. . . . . 6
|
| 39 | 38 | imp 445 |
. . . . 5
|
| 40 | 21, 39 | sylbi 207 |
. . . 4
|
| 41 | 40 | con3i 150 |
. . 3
|
| 42 | ndmaov 41263 |
. . 3
| |
| 43 | 41, 42 | syl 17 |
. 2
|
| 44 | 18, 43 | eqtr4d 2659 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-fv 5896 df-dfat 41196 df-afv 41197 df-aov 41198 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |