MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-dc Structured version   Visualization version   Unicode version

Axiom ax-dc 9268
Description: Dependent Choice. Axiom DC1 of [Schechter] p. 149. This theorem is weaker than the Axiom of Choice but is stronger than Countable Choice. It shows the existence of a sequence whose values can only be shown to exist (but cannot be constructed explicitly) and also depend on earlier values in the sequence. Dependent choice is equivalent to the statement that every (nonempty) pruned tree has a branch. This axiom is redundant in ZFC; see axdc 9343. But ZF+DC is strictly weaker than ZF+AC, so this axiom provides for theorems that do not need the full power of AC. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
ax-dc  |-  ( ( E. y E. z 
y x z  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )
Distinct variable group:    f, n, x, y, z

Detailed syntax breakdown of Axiom ax-dc
StepHypRef Expression
1 vy . . . . . . 7  setvar  y
21cv 1482 . . . . . 6  class  y
3 vz . . . . . . 7  setvar  z
43cv 1482 . . . . . 6  class  z
5 vx . . . . . . 7  setvar  x
65cv 1482 . . . . . 6  class  x
72, 4, 6wbr 4653 . . . . 5  wff  y x z
87, 3wex 1704 . . . 4  wff  E. z 
y x z
98, 1wex 1704 . . 3  wff  E. y E. z  y x
z
106crn 5115 . . . 4  class  ran  x
116cdm 5114 . . . 4  class  dom  x
1210, 11wss 3574 . . 3  wff  ran  x  C_ 
dom  x
139, 12wa 384 . 2  wff  ( E. y E. z  y x z  /\  ran  x  C_  dom  x )
14 vn . . . . . . 7  setvar  n
1514cv 1482 . . . . . 6  class  n
16 vf . . . . . . 7  setvar  f
1716cv 1482 . . . . . 6  class  f
1815, 17cfv 5888 . . . . 5  class  ( f `
 n )
1915csuc 5725 . . . . . 6  class  suc  n
2019, 17cfv 5888 . . . . 5  class  ( f `
 suc  n )
2118, 20, 6wbr 4653 . . . 4  wff  ( f `
 n ) x ( f `  suc  n )
22 com 7065 . . . 4  class  om
2321, 14, 22wral 2912 . . 3  wff  A. n  e.  om  ( f `  n ) x ( f `  suc  n
)
2423, 16wex 1704 . 2  wff  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
2513, 24wi 4 1  wff  ( ( E. y E. z 
y x z  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )
Colors of variables: wff setvar class
This axiom is referenced by:  dcomex  9269  axdc2lem  9270
  Copyright terms: Public domain W3C validator