| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dcomex | Structured version Visualization version Unicode version | ||
| Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.) |
| Ref | Expression |
|---|---|
| dcomex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 7575 |
. . . . . . 7
| |
| 2 | df-br 4654 |
. . . . . . . 8
| |
| 3 | elsni 4194 |
. . . . . . . . 9
| |
| 4 | fvex 6201 |
. . . . . . . . . 10
| |
| 5 | fvex 6201 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | opth1 4944 |
. . . . . . . . 9
|
| 7 | 3, 6 | syl 17 |
. . . . . . . 8
|
| 8 | 2, 7 | sylbi 207 |
. . . . . . 7
|
| 9 | tz6.12i 6214 |
. . . . . . 7
| |
| 10 | 1, 8, 9 | mpsyl 68 |
. . . . . 6
|
| 11 | vex 3203 |
. . . . . . 7
| |
| 12 | 1on 7567 |
. . . . . . . 8
| |
| 13 | 12 | elexi 3213 |
. . . . . . 7
|
| 14 | 11, 13 | breldm 5329 |
. . . . . 6
|
| 15 | 10, 14 | syl 17 |
. . . . 5
|
| 16 | 15 | ralimi 2952 |
. . . 4
|
| 17 | dfss3 3592 |
. . . 4
| |
| 18 | 16, 17 | sylibr 224 |
. . 3
|
| 19 | vex 3203 |
. . . . 5
| |
| 20 | 19 | dmex 7099 |
. . . 4
|
| 21 | 20 | ssex 4802 |
. . 3
|
| 22 | 18, 21 | syl 17 |
. 2
|
| 23 | snex 4908 |
. . 3
| |
| 24 | 13, 13 | fvsn 6446 |
. . . . . . . 8
|
| 25 | 13, 13 | funsn 5939 |
. . . . . . . . 9
|
| 26 | 13 | snid 4208 |
. . . . . . . . . 10
|
| 27 | 13 | dmsnop 5609 |
. . . . . . . . . 10
|
| 28 | 26, 27 | eleqtrri 2700 |
. . . . . . . . 9
|
| 29 | funbrfvb 6238 |
. . . . . . . . 9
| |
| 30 | 25, 28, 29 | mp2an 708 |
. . . . . . . 8
|
| 31 | 24, 30 | mpbi 220 |
. . . . . . 7
|
| 32 | breq12 4658 |
. . . . . . . 8
| |
| 33 | 13, 13, 32 | spc2ev 3301 |
. . . . . . 7
|
| 34 | 31, 33 | ax-mp 5 |
. . . . . 6
|
| 35 | breq 4655 |
. . . . . . 7
| |
| 36 | 35 | 2exbidv 1852 |
. . . . . 6
|
| 37 | 34, 36 | mpbiri 248 |
. . . . 5
|
| 38 | ssid 3624 |
. . . . . . 7
| |
| 39 | 13 | rnsnop 5616 |
. . . . . . 7
|
| 40 | 38, 39, 27 | 3sstr4i 3644 |
. . . . . 6
|
| 41 | rneq 5351 |
. . . . . . 7
| |
| 42 | dmeq 5324 |
. . . . . . 7
| |
| 43 | 41, 42 | sseq12d 3634 |
. . . . . 6
|
| 44 | 40, 43 | mpbiri 248 |
. . . . 5
|
| 45 | pm5.5 351 |
. . . . 5
| |
| 46 | 37, 44, 45 | syl2anc 693 |
. . . 4
|
| 47 | breq 4655 |
. . . . . 6
| |
| 48 | 47 | ralbidv 2986 |
. . . . 5
|
| 49 | 48 | exbidv 1850 |
. . . 4
|
| 50 | 46, 49 | bitrd 268 |
. . 3
|
| 51 | ax-dc 9268 |
. . 3
| |
| 52 | 23, 50, 51 | vtocl 3259 |
. 2
|
| 53 | 22, 52 | exlimiiv 1859 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-dc 9268 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-1o 7560 |
| This theorem is referenced by: axdc2lem 9270 axdc3lem 9272 axdc4lem 9277 axcclem 9279 |
| Copyright terms: Public domain | W3C validator |