MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dcomex Structured version   Visualization version   Unicode version

Theorem dcomex 9269
Description: The Axiom of Dependent Choice implies Infinity, the way we have stated it. Thus, we have Inf+AC implies DC and DC implies Inf, but AC does not imply Inf. (Contributed by Mario Carneiro, 25-Jan-2013.)
Assertion
Ref Expression
dcomex  |-  om  e.  _V

Proof of Theorem dcomex
Dummy variables  t 
s  x  f  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1n0 7575 . . . . . . 7  |-  1o  =/=  (/)
2 df-br 4654 . . . . . . . 8  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  <->  <. ( f `
 n ) ,  ( f `  suc  n ) >.  e.  { <. 1o ,  1o >. } )
3 elsni 4194 . . . . . . . . 9  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  <. (
f `  n ) ,  ( f `  suc  n ) >.  =  <. 1o ,  1o >. )
4 fvex 6201 . . . . . . . . . 10  |-  ( f `
 n )  e. 
_V
5 fvex 6201 . . . . . . . . . 10  |-  ( f `
 suc  n )  e.  _V
64, 5opth1 4944 . . . . . . . . 9  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  =  <. 1o ,  1o >.  ->  ( f `  n )  =  1o )
73, 6syl 17 . . . . . . . 8  |-  ( <.
( f `  n
) ,  ( f `
 suc  n ) >.  e.  { <. 1o ,  1o >. }  ->  (
f `  n )  =  1o )
82, 7sylbi 207 . . . . . . 7  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  (
f `  n )  =  1o )
9 tz6.12i 6214 . . . . . . 7  |-  ( 1o  =/=  (/)  ->  ( (
f `  n )  =  1o  ->  n f 1o ) )
101, 8, 9mpsyl 68 . . . . . 6  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n
f 1o )
11 vex 3203 . . . . . . 7  |-  n  e. 
_V
12 1on 7567 . . . . . . . 8  |-  1o  e.  On
1312elexi 3213 . . . . . . 7  |-  1o  e.  _V
1411, 13breldm 5329 . . . . . 6  |-  ( n f 1o  ->  n  e.  dom  f )
1510, 14syl 17 . . . . 5  |-  ( ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  n  e.  dom  f )
1615ralimi 2952 . . . 4  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  A. n  e.  om  n  e.  dom  f )
17 dfss3 3592 . . . 4  |-  ( om  C_  dom  f  <->  A. n  e.  om  n  e.  dom  f )
1816, 17sylibr 224 . . 3  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  C_  dom  f )
19 vex 3203 . . . . 5  |-  f  e. 
_V
2019dmex 7099 . . . 4  |-  dom  f  e.  _V
2120ssex 4802 . . 3  |-  ( om  C_  dom  f  ->  om  e.  _V )
2218, 21syl 17 . 2  |-  ( A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n )  ->  om  e.  _V )
23 snex 4908 . . 3  |-  { <. 1o ,  1o >. }  e.  _V
2413, 13fvsn 6446 . . . . . . . 8  |-  ( {
<. 1o ,  1o >. } `
 1o )  =  1o
2513, 13funsn 5939 . . . . . . . . 9  |-  Fun  { <. 1o ,  1o >. }
2613snid 4208 . . . . . . . . . 10  |-  1o  e.  { 1o }
2713dmsnop 5609 . . . . . . . . . 10  |-  dom  { <. 1o ,  1o >. }  =  { 1o }
2826, 27eleqtrri 2700 . . . . . . . . 9  |-  1o  e.  dom  { <. 1o ,  1o >. }
29 funbrfvb 6238 . . . . . . . . 9  |-  ( ( Fun  { <. 1o ,  1o >. }  /\  1o  e.  dom  { <. 1o ,  1o >. } )  -> 
( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o ) )
3025, 28, 29mp2an 708 . . . . . . . 8  |-  ( ( { <. 1o ,  1o >. } `  1o )  =  1o  <->  1o { <. 1o ,  1o >. } 1o )
3124, 30mpbi 220 . . . . . . 7  |-  1o { <. 1o ,  1o >. } 1o
32 breq12 4658 . . . . . . . 8  |-  ( ( s  =  1o  /\  t  =  1o )  ->  ( s { <. 1o ,  1o >. } t  <-> 
1o { <. 1o ,  1o >. } 1o ) )
3313, 13, 32spc2ev 3301 . . . . . . 7  |-  ( 1o { <. 1o ,  1o >. } 1o  ->  E. s E. t  s { <. 1o ,  1o >. } t )
3431, 33ax-mp 5 . . . . . 6  |-  E. s E. t  s { <. 1o ,  1o >. } t
35 breq 4655 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
s x t  <->  s { <. 1o ,  1o >. } t ) )
36352exbidv 1852 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. s E. t  s x t  <->  E. s E. t  s { <. 1o ,  1o >. } t ) )
3734, 36mpbiri 248 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  E. s E. t  s x
t )
38 ssid 3624 . . . . . . 7  |-  { 1o }  C_  { 1o }
3913rnsnop 5616 . . . . . . 7  |-  ran  { <. 1o ,  1o >. }  =  { 1o }
4038, 39, 273sstr4i 3644 . . . . . 6  |-  ran  { <. 1o ,  1o >. } 
C_  dom  { <. 1o ,  1o >. }
41 rneq 5351 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  =  ran  { <. 1o ,  1o >. } )
42 dmeq 5324 . . . . . . 7  |-  ( x  =  { <. 1o ,  1o >. }  ->  dom  x  =  dom  { <. 1o ,  1o >. } )
4341, 42sseq12d 3634 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( ran  x  C_  dom  x  <->  ran  { <. 1o ,  1o >. }  C_  dom  { <. 1o ,  1o >. } ) )
4440, 43mpbiri 248 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ran  x  C_  dom  x )
45 pm5.5 351 . . . . 5  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  ( ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )  <->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
) )
4637, 44, 45syl2anc 693 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) ) )
47 breq 4655 . . . . . 6  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( f `  n
) x ( f `
 suc  n )  <->  ( f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
4847ralbidv 2986 . . . . 5  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( A. n  e.  om  ( f `  n
) x ( f `
 suc  n )  <->  A. n  e.  om  (
f `  n ) { <. 1o ,  1o >. }  ( f `  suc  n ) ) )
4948exbidv 1850 . . . 4  |-  ( x  =  { <. 1o ,  1o >. }  ->  ( E. f A. n  e. 
om  ( f `  n ) x ( f `  suc  n
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
5046, 49bitrd 268 . . 3  |-  ( x  =  { <. 1o ,  1o >. }  ->  (
( ( E. s E. t  s x
t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n
) x ( f `
 suc  n )
)  <->  E. f A. n  e.  om  ( f `  n ) { <. 1o ,  1o >. }  (
f `  suc  n ) ) )
51 ax-dc 9268 . . 3  |-  ( ( E. s E. t 
s x t  /\  ran  x  C_  dom  x )  ->  E. f A. n  e.  om  ( f `  n ) x ( f `  suc  n
) )
5223, 50, 51vtocl 3259 . 2  |-  E. f A. n  e.  om  ( f `  n
) { <. 1o ,  1o >. }  ( f `
 suc  n )
5322, 52exlimiiv 1859 1  |-  om  e.  _V
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   ran crn 5115   Oncon0 5723   suc csuc 5725   Fun wfun 5882   ` cfv 5888   omcom 7065   1oc1o 7553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-dc 9268
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-1o 7560
This theorem is referenced by:  axdc2lem  9270  axdc3lem  9272  axdc4lem  9277  axcclem  9279
  Copyright terms: Public domain W3C validator