| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axinfprim | Structured version Visualization version Unicode version | ||
| Description: ax-inf 8535 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axinfprim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axinfnd 9428 |
. 2
| |
| 2 | df-an 386 |
. . . . . . . . . . 11
| |
| 3 | 2 | exbii 1774 |
. . . . . . . . . 10
|
| 4 | exnal 1754 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | bitri 264 |
. . . . . . . . 9
|
| 6 | 5 | imbi2i 326 |
. . . . . . . 8
|
| 7 | 6 | albii 1747 |
. . . . . . 7
|
| 8 | 7 | anbi2i 730 |
. . . . . 6
|
| 9 | df-an 386 |
. . . . . 6
| |
| 10 | 8, 9 | bitri 264 |
. . . . 5
|
| 11 | 10 | imbi2i 326 |
. . . 4
|
| 12 | 11 | exbii 1774 |
. . 3
|
| 13 | df-ex 1705 |
. . 3
| |
| 14 | 12, 13 | bitri 264 |
. 2
|
| 15 | 1, 14 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 ax-inf 8535 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |