Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inrab Structured version   Visualization version   Unicode version

Theorem bj-inrab 32923
Description: Generalization of inrab 3899. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-inrab  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  B  |  ps } )  =  {
x  e.  ( A  i^i  B )  |  ( ph  /\  ps ) }

Proof of Theorem bj-inrab
StepHypRef Expression
1 an4 865 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  /\  (
x  e.  B  /\  ps ) )  <->  ( (
x  e.  A  /\  x  e.  B )  /\  ( ph  /\  ps ) ) )
2 elin 3796 . . . . 5  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
32anbi1i 731 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  /\  ( ph  /\  ps )
)  <->  ( ( x  e.  A  /\  x  e.  B )  /\  ( ph  /\  ps ) ) )
41, 3bitr4i 267 . . 3  |-  ( ( ( x  e.  A  /\  ph )  /\  (
x  e.  B  /\  ps ) )  <->  ( x  e.  ( A  i^i  B
)  /\  ( ph  /\ 
ps ) ) )
54abbii 2739 . 2  |-  { x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  B  /\  ps )
) }  =  {
x  |  ( x  e.  ( A  i^i  B )  /\  ( ph  /\ 
ps ) ) }
6 df-rab 2921 . . . 4  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
7 df-rab 2921 . . . 4  |-  { x  e.  B  |  ps }  =  { x  |  ( x  e.  B  /\  ps ) }
86, 7ineq12i 3812 . . 3  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  B  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  {
x  |  ( x  e.  B  /\  ps ) } )
9 inab 3895 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  i^i  { x  |  ( x  e.  B  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  B  /\  ps ) ) }
108, 9eqtri 2644 . 2  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  B  |  ps } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  ( x  e.  B  /\  ps ) ) }
11 df-rab 2921 . 2  |-  { x  e.  ( A  i^i  B
)  |  ( ph  /\ 
ps ) }  =  { x  |  (
x  e.  ( A  i^i  B )  /\  ( ph  /\  ps )
) }
125, 10, 113eqtr4i 2654 1  |-  ( { x  e.  A  |  ph }  i^i  { x  e.  B  |  ps } )  =  {
x  e.  ( A  i^i  B )  |  ( ph  /\  ps ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   {crab 2916    i^i cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-in 3581
This theorem is referenced by:  bj-inrab2  32924
  Copyright terms: Public domain W3C validator