Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-unrab Structured version   Visualization version   Unicode version

Theorem bj-unrab 32922
Description: Generalization of unrab 3898. Equality need not hold. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
bj-unrab  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ps } )  C_  { x  e.  ( A  u.  B
)  |  ( ph  \/  ps ) }
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem bj-unrab
StepHypRef Expression
1 ssun1 3776 . . . 4  |-  A  C_  ( A  u.  B
)
2 rabss2 3685 . . . 4  |-  ( A 
C_  ( A  u.  B )  ->  { x  e.  A  |  ph }  C_ 
{ x  e.  ( A  u.  B )  |  ph } )
31, 2ax-mp 5 . . 3  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  ( A  u.  B )  |  ph }
4 orc 400 . . . . 5  |-  ( ph  ->  ( ph  \/  ps ) )
54a1i 11 . . . 4  |-  ( x  e.  ( A  u.  B )  ->  ( ph  ->  ( ph  \/  ps ) ) )
65ss2rabi 3684 . . 3  |-  { x  e.  ( A  u.  B
)  |  ph }  C_ 
{ x  e.  ( A  u.  B )  |  ( ph  \/  ps ) }
73, 6sstri 3612 . 2  |-  { x  e.  A  |  ph }  C_ 
{ x  e.  ( A  u.  B )  |  ( ph  \/  ps ) }
8 ssun2 3777 . . . 4  |-  B  C_  ( A  u.  B
)
9 rabss2 3685 . . . 4  |-  ( B 
C_  ( A  u.  B )  ->  { x  e.  B  |  ps }  C_  { x  e.  ( A  u.  B
)  |  ps }
)
108, 9ax-mp 5 . . 3  |-  { x  e.  B  |  ps }  C_  { x  e.  ( A  u.  B
)  |  ps }
11 olc 399 . . . . 5  |-  ( ps 
->  ( ph  \/  ps ) )
1211a1i 11 . . . 4  |-  ( x  e.  ( A  u.  B )  ->  ( ps  ->  ( ph  \/  ps ) ) )
1312ss2rabi 3684 . . 3  |-  { x  e.  ( A  u.  B
)  |  ps }  C_ 
{ x  e.  ( A  u.  B )  |  ( ph  \/  ps ) }
1410, 13sstri 3612 . 2  |-  { x  e.  B  |  ps }  C_  { x  e.  ( A  u.  B
)  |  ( ph  \/  ps ) }
157, 14unssi 3788 1  |-  ( { x  e.  A  |  ph }  u.  { x  e.  B  |  ps } )  C_  { x  e.  ( A  u.  B
)  |  ( ph  \/  ps ) }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    e. wcel 1990   {crab 2916    u. cun 3572    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-un 3579  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator