| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inab | Structured version Visualization version Unicode version | ||
| Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| inab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sban 2399 |
. . 3
| |
| 2 | df-clab 2609 |
. . 3
| |
| 3 | df-clab 2609 |
. . . 4
| |
| 4 | df-clab 2609 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 733 |
. . 3
|
| 6 | 1, 2, 5 | 3bitr4ri 293 |
. 2
|
| 7 | 6 | ineqri 3806 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 |
| This theorem is referenced by: inrab 3899 inrab2 3900 dfrab3 3902 orduniss2 7033 ssenen 8134 hashf1lem2 13240 ballotlem2 30550 dfiota3 32030 bj-inrab 32923 ptrest 33408 diophin 37336 |
| Copyright terms: Public domain | W3C validator |