Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored Structured version   Visualization version   Unicode version

Theorem bj-ismoored 33062
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1  |-  ( ph  ->  A  e. Moore_ )
bj-ismoored.2  |-  ( ph  ->  B  C_  A )
Assertion
Ref Expression
bj-ismoored  |-  ( ph  ->  ( U. A  i^i  |^| B )  e.  A
)

Proof of Theorem bj-ismoored
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-ismoored.2 . 2  |-  ( ph  ->  B  C_  A )
2 bj-ismoored.1 . . 3  |-  ( ph  ->  A  e. Moore_ )
3 bj-ismoorec 33060 . . 3  |-  ( A  e. Moore_ 
<->  ( A  e.  _V  /\ 
A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
42, 3sylib 208 . 2  |-  ( ph  ->  ( A  e.  _V  /\ 
A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
5 elpw2g 4827 . . . . 5  |-  ( A  e.  _V  ->  ( B  e.  ~P A  <->  B 
C_  A ) )
65biimparc 504 . . . 4  |-  ( ( B  C_  A  /\  A  e.  _V )  ->  B  e.  ~P A
)
7 inteq 4478 . . . . . . 7  |-  ( x  =  B  ->  |^| x  =  |^| B )
87ineq2d 3814 . . . . . 6  |-  ( x  =  B  ->  ( U. A  i^i  |^| x
)  =  ( U. A  i^i  |^| B ) )
98eleq1d 2686 . . . . 5  |-  ( x  =  B  ->  (
( U. A  i^i  |^| x )  e.  A  <->  ( U. A  i^i  |^| B )  e.  A
) )
109rspcv 3305 . . . 4  |-  ( B  e.  ~P A  -> 
( A. x  e. 
~P  A ( U. A  i^i  |^| x )  e.  A  ->  ( U. A  i^i  |^| B )  e.  A ) )
116, 10syl 17 . . 3  |-  ( ( B  C_  A  /\  A  e.  _V )  ->  ( A. x  e. 
~P  A ( U. A  i^i  |^| x )  e.  A  ->  ( U. A  i^i  |^| B )  e.  A ) )
1211expimpd 629 . 2  |-  ( B 
C_  A  ->  (
( A  e.  _V  /\ 
A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A )  ->  ( U. A  i^i  |^| B
)  e.  A ) )
131, 4, 12sylc 65 1  |-  ( ph  ->  ( U. A  i^i  |^| B )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by:  bj-ismoored2  33063
  Copyright terms: Public domain W3C validator