Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored0 Structured version   Visualization version   Unicode version

Theorem bj-ismoored0 33061
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-ismoored0  |-  ( A  e. Moore_  ->  U. A  e.  A
)

Proof of Theorem bj-ismoored0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bj-ismoore 33059 . . 3  |-  ( A  e. Moore_  ->  ( A  e. Moore_  <->  A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A
) )
2 0elpw 4834 . . . 4  |-  (/)  e.  ~P A
3 rint0 4517 . . . . . 6  |-  ( x  =  (/)  ->  ( U. A  i^i  |^| x )  = 
U. A )
43eleq1d 2686 . . . . 5  |-  ( x  =  (/)  ->  ( ( U. A  i^i  |^| x )  e.  A  <->  U. A  e.  A ) )
54rspcv 3305 . . . 4  |-  ( (/)  e.  ~P A  ->  ( A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A  ->  U. A  e.  A ) )
62, 5ax-mp 5 . . 3  |-  ( A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A  ->  U. A  e.  A
)
71, 6syl6bi 243 . 2  |-  ( A  e. Moore_  ->  ( A  e. Moore_  ->  U. A  e.  A
) )
87pm2.43i 52 1  |-  ( A  e. Moore_  ->  U. A  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by:  bj-0nmoore  33067
  Copyright terms: Public domain W3C validator