MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   Unicode version

Theorem rint0 4517
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4478 . . 3  |-  ( X  =  (/)  ->  |^| X  =  |^| (/) )
21ineq2d 3814 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  ( A  i^i  |^| (/) ) )
3 int0 4490 . . . 4  |-  |^| (/)  =  _V
43ineq2i 3811 . . 3  |-  ( A  i^i  |^| (/) )  =  ( A  i^i  _V )
5 inv1 3970 . . 3  |-  ( A  i^i  _V )  =  A
64, 5eqtri 2644 . 2  |-  ( A  i^i  |^| (/) )  =  A
72, 6syl6eq 2672 1  |-  ( X  =  (/)  ->  ( A  i^i  |^| X )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   _Vcvv 3200    i^i cin 3573   (/)c0 3915   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476
This theorem is referenced by:  incexclem  14568  incexc  14569  mrerintcl  16257  ismred2  16263  txtube  21443  bj-mooreset  33056  bj-ismoored0  33061  bj-ismooredr2  33065
  Copyright terms: Public domain W3C validator