Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbceqgALT Structured version   Visualization version   Unicode version

Theorem bj-sbceqgALT 32897
Description: Distribute proper substitution through an equality relation. Alternate proof of sbceqg 3984. (Contributed by BJ, 6-Oct-2018.) Proof modification is discouraged to avoid using sbceqg 3984, but "minimize */except sbceqg" is ok. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-sbceqgALT  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )

Proof of Theorem bj-sbceqgALT
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2616 . . . . . 6  |-  ( B  =  C  <->  A. y
( y  e.  B  <->  y  e.  C ) )
21sbcth 3450 . . . . 5  |-  ( A  e.  V  ->  [. A  /  x ]. ( B  =  C  <->  A. y
( y  e.  B  <->  y  e.  C ) ) )
3 sbcbig 3480 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( B  =  C  <->  A. y ( y  e.  B  <->  y  e.  C
) )  <->  ( [. A  /  x ]. B  =  C  <->  [. A  /  x ]. A. y ( y  e.  B  <->  y  e.  C ) ) ) )
42, 3mpbid 222 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [. A  /  x ]. A. y ( y  e.  B  <->  y  e.  C
) ) )
5 sbcal 3485 . . . 4  |-  ( [. A  /  x ]. A. y ( y  e.  B  <->  y  e.  C
)  <->  A. y [. A  /  x ]. ( y  e.  B  <->  y  e.  C ) )
64, 5syl6bb 276 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  A. y [. A  /  x ]. ( y  e.  B  <->  y  e.  C
) ) )
7 sbcbig 3480 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  B  <->  y  e.  C )  <->  ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C
) ) )
87albidv 1849 . . 3  |-  ( A  e.  V  ->  ( A. y [. A  /  x ]. ( y  e.  B  <->  y  e.  C
)  <->  A. y ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C
) ) )
9 sbcel2 3989 . . . . . 6  |-  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B
)
109a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
11 sbcel2 3989 . . . . . 6  |-  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C
)
1211a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
1310, 12bibi12d 335 . . . 4  |-  ( A  e.  V  ->  (
( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C )  <->  ( y  e.  [_ A  /  x ]_ B  <->  y  e.  [_ A  /  x ]_ C ) ) )
1413albidv 1849 . . 3  |-  ( A  e.  V  ->  ( A. y ( [. A  /  x ]. y  e.  B  <->  [. A  /  x ]. y  e.  C
)  <->  A. y ( y  e.  [_ A  /  x ]_ B  <->  y  e.  [_ A  /  x ]_ C ) ) )
156, 8, 143bitrd 294 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  A. y ( y  e. 
[_ A  /  x ]_ B  <->  y  e.  [_ A  /  x ]_ C
) ) )
16 dfcleq 2616 . 2  |-  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  A. y ( y  e.  [_ A  /  x ]_ B  <->  y  e.  [_ A  /  x ]_ C ) )
1715, 16syl6bbr 278 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator