| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcth | Structured version Visualization version Unicode version | ||
| Description: A substitution into a
theorem remains true (when |
| Ref | Expression |
|---|---|
| sbcth.1 |
|
| Ref | Expression |
|---|---|
| sbcth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcth.1 |
. . 3
| |
| 2 | 1 | ax-gen 1722 |
. 2
|
| 3 | spsbc 3448 |
. 2
| |
| 4 | 2, 3 | mpi 20 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: iota4an 5870 tfinds2 7063 wunnat 16616 catcfuccl 16759 dprdval 18402 bj-sbceqgALT 32897 f1omptsnlem 33183 mptsnunlem 33185 topdifinffinlem 33195 relowlpssretop 33212 cdlemk35s 36225 cdlemk39s 36227 cdlemk42 36229 frege92 38249 |
| Copyright terms: Public domain | W3C validator |